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APPING. Linear functions, sterecgraphic projection, simple non-
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rigorous,” JOURNAL OF THE AMERICAN STATISTICAL ASSOC1A-
TION. :

LE

vili - 126pp. 5% x 8. R -
' 5158 Paperbound_$l.35



PROBLEM BOOK IN

THE THEORY OF FUNCTIONS !\.;
\\

'../
\

A3

AN 3
VoruMe I ﬁ\\‘

Problems in the Elementary I‘heer “of Funetions
\ o’
\\
ww w dbr agkbbtary org.in

s ’“
N

—————

- VEHSIY
P X



THE DOVER SERIES IN MATHEMATICS AND PHYSICS

)
First American Edition d'\(})
CorrricHET 1948 BY ’Q}s’
DOVER. PUBLICATIONS, INC. &®~
| N\
\/
4
o
www.dbra L@'ér‘y org.in
™
&
\’\
O
O
QQ}
\§ o
A
O

o
FRINTED IN THE, UONITED HTATER OF AMERICA



CONTENTS
Foreword vii

PROBLEMS ANBWERS

Chapter I FUNDAMENTAL

CONCEPTS ")
¢~\\
§1. Numbers and Points 1 <~[}:J 41
§2. Point Sets. Paths. Regions 3LY 43
Chapter II INFINITE SEQUENCES\/
AND SERIES o\
§3. Limits of Seguences. Iﬂf‘fnite
Series w 1th\:(3mmﬁaﬁrbb:|3faymﬂg in 7 50
$4. Convergence Propertles of Power
Series SO 10 54
\}V
Chapter ILX, FUNCTIONS OF A
COMPLEXVARIABLE
§5. Lim{€d of Functions. Continuity
@a"piﬁerentiabiﬁty 14 61
§6 Sunple Properties of the Ele-
\) mentary Functions 16 68

Chapter I'V INTEGRAL THEOREMS

§7. Integration in the Complex
Domaitn 20 79



vi CONTENTS

FROBLEMS

§8. Cauchy’s Integral Theorems and
Integral Formulax 22

i

Chapter V. EXPANRION IN SKRIFS

§9, Series with Variable Terms. Tlni-
form Convergence 25

§10. Expansion in Power Series 27

§11. Behaviour of Power Serics on the ”>
Circle of Convergence \Q\B'
: N

A
Chapter VI CONFORMAL Mag&' NG

§12. Lincar Functions. "Stmepgrsq)hlc

Projection ,:;" 33
a LAV b{\ dulibrary .org.in
§13. Simple Non-1. mm:r Tapping
Problems 37
iy '3\
LA
O\
w\.)
¥
rz;\“'
O
’ /%../
N
o)

ANSWETS

5

110

118



FOREWORD

This translation follows the second edition of K.
Knoopp's Aufgabensammiung zur Funktionentheorie, I\
Teil, except for a few minor changes, \

The problems of the first five chapters cunvem iz~
terial treated in the fivst volume of the same\author’s
Theory of Functions (referred to as KI; th:e references
are to the translation by Bagemihl, Dovef\Pubhcatmns
Ine., 1945.) Familiarity with the ﬁrst bwo chapters of
C. (,‘a,l athéodory’s Conformal R@présmiatwn {(Cam-
bridge University Press, 1932¢ yeferred to as C) is
sufficient for the undcrstandmg of the problems in
Chapter V1.

The solutioft df E]tbf)al‘ﬂ’é’féﬁ URdR depends on that of
& previous one. Some problems are more difficult than
others; these are {m‘arked by asterisks, On many occa-
glonsg, the 1ead&(\mll find carefully executed skebehes
helpful in the jelution of problems. This applies partic-
ularly to Mie’problems in Chapter VI.

The, Q:\t"ations in this volume are as follows: Compiex
numbers (and pomts) arc denoted by z, ,2,, -+ , W,
wey o+ @, b -+, complex vana,bles by z ¢ - w
@ -+ . (In §13, however, 2, , 2, - -+ denote varlables.)

Y

‘Numbers conjugate to z, a, --- are denoted by %, @

Real constants are denoted by 2o, 21, **+ , Yo, Y1,
cee L Ug, s Ve, By e ke . Wewritez =
x4 iy = r(cog ¢ + i-sin @), 2 = RE), y = J@),

r=|z|,¢=amaez



viii FPOREWORD

Positive constants are denoted by r, p, 8, € -
positive integers by m, n, p -

Reglons are denoted by L&pltdl German letters: ),
I, - -+, paths and curves byl c. Getman and capital
roman letters: 8, p, --. , C. L,
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Part I—PROBLEMS

CHAPTER I &
FUNDAMENTAL CONCEPTS | &

§1. Numbers and Points \‘
A § N\
(KL, 1-2)

0
o

1. Given a complex number 2, #‘Q “find its reflection
with respect to a) the origin, k)) the real axis, ¢) the
1magmary ams Kis) Erauh}mrym -y =0, e) the line
z + Yy =
| % Showtha‘o (1;’2*)0%1 +lyh) <|z] < |z] +
Y \

3. Find the IOC\]\bf points z satisfying the following
relations:

> ‘nl
;s
N4

D 2] 2% B z[>2% 9RO

&
,Q)”\,D‘ < Rz) < 2, e) REH = a(%ﬂ);
N
f) 3¢ = a(%ﬂ); g |2 —z][<1;

h [ —1]=a>0; i)




2 FUONDAMENTAL CONCEPTS

L lz—1 _ |z —1{_ ..
| |
2 — . \z z‘]_!_
) z+1’ﬁa>0’ m T T

4. When are z; , 22, 2, collinear? {Consider the differ- \
ence quotient (2, — 23) &z — 2).) \\

5. Whendoz;,2,,2:, 2. lieonacircleorona kt.ml\gh
line? {Consider the cross-ratio (z, — 23)/(22 ”—s 2;) +
(2, — 2}/ (7 — 2).) ’

6. What is the geometrical meaning Of the identity
121 ol dla ~ ol =2ai Hienl)?

. Find the point z dividing the sggment 2y v 21

the ratio Ay + As (0 F Ao 2 O3NS

8. Find the mass center ofithe triangle #, , 2; , 2z
when a) each vertex ‘z‘“’l"ﬁ’i‘fﬂ’%“ﬂ{é‘ ¥t fnass A, b) the
vertices carry the masses , Az, Xs . ¢) Show that the
mass center found 15)\13) Hes within the triangle if all
three masses are i@ﬁitzve.

9, Thp masses X; , A2, -, A are situated at z,
2y, e Shmv that the ma-as center of thls system
52 = 0\131\47 L Al P VY PAC WIS S VIS SRR S S R

10. Gi’v‘enthat 2 —l—zg 4+ 2 =012 = |z =

25 , 23 are the vertices of an
e.qpﬂateral tnangle 111‘4[3?1]36(1 into the unit circle,
\~11 Given that 2, + 2, + 23 + 2. = 0, |2z =
T2] = &l = lag| = 1, show that 2, , 2, , 23 , 2
are the vertices of a rectangle inscribed into the unit
circle.
12. When are two triangles, z, , 2, , 2z, and 2{ , 2}, 2}
similar and similarly situated? (Cf. problem 4.) *



POINT SETS. PATHE, REGIONS 3

*13. a) Giventwopoints 2z, ,2,, | 2| <1, ]2 | <1,
show that for every point z # 1 belonging to the
triangle z, , 2, , 1

1 —z
11—z < K
1—[z]
N
where K = K{z, , 2,) is a constant depending only, qu
£ cl.nd Za . ~’\'

b) Determine the smallest value of K i(){ ¥ =

(1 +9)/2, 2, = (1 — ©)/2.
."‘.,\\’

RN,
§2. Point Sets. Paths R\Eions

(KI, 3—4)
1. Show th&‘ﬁ“’i‘h@@@’e"tﬂ&‘@f@fﬁ%@'ﬁ algebraic equations
of the form ‘f:',

Gs2" +az ’\—l— -+ a2+ a =10

the als being Gaﬁsman integers, is countable. (A set is
countable 1f4ts clements can be arr anged 1n 4 sequence.
A vomple@ humber z is called a Gaussian integer if
R(z) ﬁ{fﬁ‘x (z) are real integers.)

23\ 'Sho“ that the set of all numbers z = x 4+ 2y, *
‘mrl u being rational numbers, is countable.

\ “3. Order the set of all numbersz = 1/m + i/n (m,
n positive integers) into a sequence.

4. Find the greatest lower bound «, the least upper
bound B, the lower limit A, and the upper limit u of
the following real sets. (Indicate whether or not «, 8,
A, u belong to the set considered).



4 FUNDAMENTAL CONCEPTS

a) The set of rational numbers p/¢ with even ¢ and
p’'/q" < 10.

b) The set of numbers of the form (I & 1/n)".

¢) The set of numbers of the form (1 3= 1/2%)"

d) The set of numbers of the form n & 1/n.

e) The set of numbers of the form »n & 1/3.

f} The set of numbers of the form 1/m + 1/n. \
g) The set of numbers of the form (1/m + 1/?1)"“" {
h) The set of numbers of the form 4-1/m - l/ns

i) The set of numbers of the form 1 -+ (,._ 1+

(=1)"/n. ¢
k} The set of all numbers which may N written as
infinite decimal fractions of the form a~,¢~,aa see L a; odd,

{In b) to i) » and m dcnote arbltrary positive in-
tegers.)

*5. Show that each point of the set defined in 4k%) 1s
a limit point of the setyw.dbraulibrary orgin
6. Show that & = A whenever o« does not belong to

the set and 8 = u “@mever 3 does not belong to the
set.

7. Is the set d\ﬁned by the relation | 2| + Nz <
1 bounded? What domain does it oceupy ?
8. Fmd\@ll limif points of the following sets:
a) 1/1{5% i/n, m and n positive integers,
b) &b <1,
c)\l 2| > 1,
“dY the set deﬁned in problem 2,

e} the set of all non-real z in the domain interior to the
unit cirele.

*0. Is the sct defined in problem 4k) closed?

10. Is a limit point of a point set which does not
belong to the set a boundary point of the sct?
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11, Show that a boundary point of a point set M
which belongs to M is a limit point of the comple-
mentary set M’, (M’ consists of all points which do not
helong to M.}

12. Show that the set of all boundary points of a.
point set M is closed.

*13. Given two disjunct closed point sets M’ and M‘“
one of which, say M, is bounded, show that thereexmts
a positive number d such that |2 — 2 | > dwhenever
2’ belongs to M’ and 2"’ to M". Show thaj;‘ among all
such numbers d there exists a largest nonber d, .

14. Show that an arc of the con@mlmus curve

&
x sin (r/a:),szx #= 0
y = N
0 forzn= 0
www.dbraujjlzira.ry,org,in
containing the originds not rectifiable.

15. Let 9% consist of all points of the upper half-
plane [J(z) > N\except those lying on the segments
=ztz—':[:1/n+ztn—123 0 <t < 1.
Is I a r on? Find the boundary points of M. Is /2
a boundary point? Does there exist a path leading from
Zp = + i to /2 and situated (except for the end-

p@mt 1/2) within IN?
\“16. Consider the spiral S defined by

6(-—1+l)/t’ 0 < :

1A
:—*

z = 2(t)
Qfort = 0.

Is S a path leading from z; = 2({1) to 2z, = 0?
*17. Let ® be a plane region, ®, its image under



4] FUNDAMENTAL CONCEDPTS

stereographic projection, M the set of boundary points
of &, . Show that & is simply connected if and only
if M is connected. (A cloged set is called connected if
1t can not be divided into two closed sub-sets without
a common element.)

19. Show that a simply connected region ¢ QR ﬁle
surface of a sphere which does not contain twé\‘p,omts
of the sphere does not contain infinitely mﬂpy points
of the sphere. N\ 4

S
Q\\

.

18. Is the region defined in problem 15 simply con- \
nected? O



CHAPTER II
INFINITE SEQUENCES AND SERIES

§3. Limits of Sequences. Infinite Series with Constant
Terms

(KI, 2-3)
.‘ \'

. Let g' be a limit point of the sequence, zg\ 2o

Q)

-, %, ++- . Show that the sequence cont‘nns a sub-
sequence z{ , z; , - -+ which converges to {2) :
2. If 2, — ¢, then \{f;\
_ ;____zl+z2+""_}*‘é?(‘__>
13 Zn n :.:\v S‘—

Tsthistrueif { = ©? 4 W
3. If 2. — & hedy: aulrb‘;aly org.in

+ 121 +p222-|: +pnn

T 2 + Pa
\\.l
— 1217{“}[32"})1)22 .-'+(Pﬂ_Pﬂ—l)zﬂ__);
o \} P,
whe\ L, P2, -+ 15 any sequence of positive numbers
suc\hthatP =(p+p+ 0+ p) oA

A 34, If z, — ¢, then
\' l
\' _ b131 -[' b222 _1" Tt + buzn

n bl+bg+"'+bn

Bz + (B'z — B, )32 = s o (Bu “ Bn-—l)zn ¢

7

!li



8 INFINITE BEQUENCES AND SERIES

if by, ba, + - - are complex numbers such that for all n the
numbersﬁ,‘= (lbl + by + - +bni)/(| b1‘+|b2]+
- + 1b,]) exceed some fixed positive number 8, and
such that (|b,] 4 | ba] + -+ + [ b ) = .
5. Let there be given infinitely many numbers a.x
arranged in the form

a1 €\
e
"\
agl a'22 % N/
N

s, Qaa daz "

R
Oy [L¥Y) Ay sy v
................... ,.x;\>"

2\

and satisfying the conditions: 1) for every fixed p,
a., — 0, 2) there exists a posltwe constant M such

that |an | + lan | +, de?%u] [herl ot b for all =
Show that if z, — 0, then

Zn = Qu?t ”*"“@).232 ©F &z, — O

6. Assume that\fn addition to conditions 1) and 2) of
the preceding(problem the numbers a,, also satisfy the

conditiox}:{j}%ﬂﬂ = Oy + Qe + -+ + @, — 1. Show
that 1f\\<,.,~\——> ¢, then

AV 2 S Gzt Gt e

Show that this theorem contains as special cases the
theorems stated in problems 2, 3, 4.
7.8) If 2l — " and 2/ — ¢, then

2lzl! 22l - It t
= B : A
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*b) and
Futt Futt F ot
2, = 2, + 2t A - -+ zrr.zl’_} crer,
biA
*¢) and AL
2o = G2 + auzizily + o el — fON

provided the numbers a,, satisfy the conditions\D), 2).

3) of problems 5 and 6, as well as 4) each “diagonal”

sequence converges to(), 1.c. for each fixed pidy. ,_,., — 0.
8. If z, — ¢, then N4

Ok (0
2’ = pr O — {.

n

0. Iz — 0,2/ -0, d.'ﬁdlf there exists a constant
M such that | 2P PEPY Ry orein |2l | < M for
all n, then \~ :

% = AglF el + - 2l > 0.

10. The following condition is necessary and suffi-
cient in opegr that the infinite series > ..o ¢, be con-
Vergenp(;ﬁffr‘ every sequence of positive integers p, ,
P2 ;"%\ Poy -y .
AV T = e F Caa ot ) — 0.

it Given two sequences of numbers 4, , @, , @, , - -
and by , by, b,, -+ ,scbay +a,+ - +a, =s,.
Forn > 0 and p > 1, show that

b ntp

E a!bv = E Sv(by - br+1) - Snbn+l + 3n+pbn+p+1 .

b+l r=n+l

(Abel’s summation by parts.)



10 INFINITE SEQUENCER AND SERIES

12. Let D o, a, be a (convergent or divergent) in-
finite series. Set ¢y + @, + -+ + a, = s, . Let b, ,
by, - ++ be a scquence of numbers such that

1. the sequence of numbers s,b,,, converges,

2. the series E:',-D 8.(bn — b,:1) converges.

Show that the series > oo a,b, converges.

13. Show that the conditions of the preceding, the-
orem are satisfied in each of the following three(adses:
a) b,y > b, for all n, b, — 0, (s,) is bounded:\

b) b,y > b, > afor all n, Zq, converges; ‘>
¢) b, —0,Z|b, — b,., | converges, (s,,)‘ié\bounded.

*14. Let the partial sums s, of the séries Za, be such
that the sequence (s,/n'/?) is boung@&‘. Let the positive
numbers b, be such that b,., 2, — 0, n'’* b, — 0,
and 2n'*(b, — b,.,) converggs.-Show that under these
conditions Za.b, CONVergess

W ?v.'giljra ulibrary org.in

N\

"’{
§4. Conver{ghc‘e Properties of Power Series
(KI, 17-20)
ZL Fing t}fe’:radii of convergence of the power series
:..o a»,,x’iwith
&
a!iw’;i,‘ ';_—..%L, =n, =1— = (ﬂ+a)

g n

N\

b) QA = ) = nlog n: = (log n)ﬂ'
n

[

1 ne n?



CONVERGENCE PROPERTIES OF POWER BERIES 11

d) @. = 7(n) = the number of factors of n,
= ¢(n) = the number of integers < n which

are prime to »;

N fas  _ (28 (B (1R \
) {az;c-n s T e T (log k)k' KON

NS ©

2. Let there be given a power scries wau;z“ I
for some value 2, and for two positive numbars X and
k, either a) [ a.z |° < Kn®, or b) | ap +3gh + -+ +
.25 | < Kn®, for all n, then the poweKaeries converges
absolutely for every z such that | 2% 2, |.

3. Let the scries Za,2” have theéTadius of convergence
r and the series Za/z" the I;a,ditis‘ of convergence r’,
Find the radii of"?z”’(‘)‘hc{rber?ﬁéiltfégbff‘cﬁ"fhe following series:
Za, + an)?", Za,ale", 2@, al)e". (In the last case it
is assumed that no a]manishes.)

4. Given that thegeries Zg,2" has the radius of con-
vergence v > 0.%nd the radii of convergence of the
following serigd: ¥a,n*2", Z(a"/n")2", Sla./n)2", Zanle".

*5. At whidh points on the circle of convergence does
the power Beries

A\ _
O 7
\onverge ?

6. If » > 0 is the radius of convergence of the series
Za,2", and if at a point 2, , | 2, | = 7, the series converges
absolutely, show that Za,2” converges absolutely and
uniformly for | z| < r.



12 INFINITE SEQUENCES AND SERIES
7. Consider the power series
2p I
2 -4
Y
2+ 5+ 5+
2 3

p being a positive integer. At which points on the circle
of convergence does the series converge? ’
8. If the coefficients of the power series Za.2" are
real numbers and a, > a,,, , a, — 0, then a) the sexiés
has a radius of eonvergence r > 1, and b) if » (& 1,
then the series eonverges at all points on thegewrele of

convergence, except perhaps the point z = D

9. The assertion of the preceding prablem holds also
for series with complex coefficients 9N provided that
a,— 0and Z | ¢, — a,.; | converges

10. How must one modify the gtatements in prob-
lems 8b and 9 if r > 17

11. Let r be the re‘f&i?{s@é‘?uggﬁ%f e fice of Za.z", p
that of =b,2". Set ¢, = &b, + @:ibos + - 4 aby .
What is the radlus\of convergence R of the series
Ze"? O

*12. Let there\be given the power series
FEREas + ale — z0) + aalz — 20)° + -
with ra,d\n}s of convergence r > 0, and the power series
W ) = Ao+ A — w) + Aslw — w))* + -
N ga}th radius of convergence R > 0. Using the relation
~ w— W, = (@, — wy) + ian(z—zo)",

n=1

obtain series for (w — wy)*, k = 2, 3, - .- . Substitute
these expressions into the series for W to obtain the
power series
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W = 3 bz — 2).
ne={
For which values of 2 is this series certainly convergent?
For which values is it certainly divergent? If the series
converges, is it true that W = g(f(z))?
I I w = f(2) = @ + a2z + a2® + --- a.nd
te # 0, then W = 1/w = 1/(f(z)) can be expancle\d

11 a power series by + bz + b,2° + - -+ . Find recursmn
formulas for the coefficients b, and a Iowelj..bound for
the radius of convergence of 2b,2". A

i4. Form a power series whose radius\of' convergence
is I and which diverges at p preas&»g}aed points of the
unit, circle, while converging at all\other points on this
circle, D
**¥15. Docs there exist a pc)wer seties with the follow-
ing properties: tfi’é"i“’a’i‘ﬁiﬁ%“@b&ﬁﬁ‘"&g’énce is 1, the series
converges at z — 1 and\diverges at all other points on
the unit circle? N



CHAPTER III
FUNCTIONS OIF A COMPLEX VARIABLE

§5. Limits of Functions. Continuity and Differentiability
(KI, 5-7)

L. Investigate the following two functions: L\

(a) f(z) = 0 whenever |z | is a.n Irrational nufiber;
flOY = 0; f(z) = 1/q whenever |z| is a ratiomﬂ num-
ber, | z| = p/q, p and ¢ being pOblt]‘vC IeIat\\(elv prime
integers.

(b) f(0) = 0;f(z) = sin § forz = r@osﬁ + ¢ sin 8),
r > 0. At which points of the pldne\aa"\e these functions
continuous? At which points aréhey discontinuous?

2. I f(z) is continuous at Q and 2, — (, then w, =
f(zn) - f( ) W W clbl'au'hbl ary.org.in

3. Conversely, if 1(z) i defined at { and in a neigh-
borhood of this point ahd if for every sequence of points
z, of this nelghbo,rh(;}od w, = f(z,) — f(£} whenever
z, — ¢, then f(z)\s\contmuous at ¢.

4. Is the functlonf(z) 1/(1 — 2) continuous in the
domain inténor to the unit cirele? Is it uniformly con-
tinuous, m\thls domain?

5. &‘at J(z) = ¢ """ for z # 0. Is this funetion con-
tinpéus {uniformly eontinuous) in the domain 0 <

~ND < 17
6. Forz # 0 set
_ R AN (C) _ [R@YT°
fl(z)_1+| |} fz(z)_;z|1 fS(z)“ |Z|)
1 = P 1 = B

N\
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Assign to all five functions the value 0 at z = 0. Which
of these functions are continuous at ¢ = 07

7. Replace in the definition of the above funetion
R ) by &{z) and answer the same question.

*8. Let f(z) bedefined for | z| < 1 (motfor| 2| < 1)
and be uniformly continuous in this domain. For everys,
sequence of points z,, | 2.| < 1, converging toward a
point ¢ of the unit circle, lim, .., f( 2,) exists and depénds
only on {. (In other words: fz) possesses uﬁlquely
determined boundary values.)

*3, The boundary values of the funbﬁon f(z} in
problem 8 are continuous.

10. At which points are the funetions of problems 1
and 5 differentiable? (Give dets:ﬂed proofs for each
funetion.)

11. If two re@{]wv‘l&ggglfgq%wm ¢(z, ) and ¥(z, y)
defined in a domain G possess continuous partial de-

rivatives satisfying the C‘auchy—lhemann equations, the
same is true for thésfollomng pairs of functlons ¢ =
— ¥ ¥ = Wi, = ¢ cos i, ¥y = ¢ sin g

12 In a dopmain ® : f'(z) = 0. Without separating
finto its Pea! and imaginary parts, prove that f is con-
stant 111@

*l&“l.et f'(z) exist and be continuous in | z — ¢ <
poeket (z) and (z) be two sequences of points from
this domain; z, 5 z for all n, 2, = §, 2. = {. Prove

\ ‘that

f(z:tz - f(zn) — f}(g-)
Bn — Zn

(Hint: Separate the difference quotient into real and
imaginary parts and apply the mean-value theorem.)



16 FUNCTIONS OF A COMPLEX VARIABLE

*14, If f(z) possesses a continuous derivative in
Iz — £ < p, then f(2) is uniformly differentiable in
lz — 1 < 9o < p;le, for every ¢ > O there exists a
8 < 0 such that

fE) — f@&) )
o — '@

whenever |z — {| < o/, |2 — ¢} < p, and 0\<‘\
|28 —z| <.

A
S

§6. Simple Properties of the Elementary \Functions

(K1, 23-26)
L&

1. For 0 < |z| < 1, (]/4) |zl <le — 1] <
(7/4) | z|.
2. |e' ~ 1] <€ _..\.\;ywrﬁbﬁggj'g‘ﬁhymgm
3. If » is real and different from 0, then
{a) € > 1+ 2,
(b) & < 1/(1 = zs)forx < 1,
{e) /(1 + 2)2< <a:for:e:> -1,
(d) z < ¢ —1<x/(1--x)fora:<1
(e) 1+ a'\> e for > —1,
() e* »\2"/p!for z > 0 and all positive integers p,
(g) £ X (14 z/p)* > " forz > 0,y > 0,
(l{) v <1 -(a:/2) for0 < =z < 1.
\4 (1 4 z/n)" - ¢ for all 2.
5. If the sequenee (2.) converges to {, then
(1 4 z,/n)" — &,
6. Show thai the equation ¢* = 1 has no solutions
other than z = 2kni(k = 0, =1, +2, ---).
7. By direct multiplication of power series show that
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(3:"6“ —_ e:;-l—zx
8. Using the power series deﬁmng e* prove that this
function is periodic.
9. Let 2z approach infinity along a ray through the
origin {am z = const.). Find all direetions for which

N

. s AN
lim ¢ ~A
exists. N
10. Let z move as in the preceding proble:m How
does z + ¢° behave? A

i1, z approaches infinity along the hyperbola. Ty =
1. ¥ind the four values of lim & coréspondmg to the
four branches of the hyperbolaey™

12. Does lim ¢° exist whenwz approaches 1nﬁmty
along one of the branches of %the parabola y = =z 7

13. Prove (b\,\;\,\d}]&]ﬁt?umuéﬁw;%ﬂiwon of the power
series) that

RA .
cos (z, + Q,f:’z COS 2, - €08 2, — §ih 2,°8in 2z,
sin (21 —I— %,) = Sin z,-CO8 2, + €08 Z-8I0 23 ,
{*052’& + gin’z = 1.

‘ék\iong which curves in the z-plane are the fune-
tu.gns e*, cos z, sin z real?

“15. What is the most convement way to compute
e*, cos z, sin z? Compute ¢°**, cos (§ — 7), sin (1 — 51
to threp places after the declmal point.

16. Find all solutions of the following equations

sin z = 1000, sin z = 51, ginzg=1—1,

cosz:%,cosz=4—|—3i,cosz=5.
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2 B
=, + a2z + 1. + a2

+ a2t + a2’ + -

Find the coefficients a, , @, , - -+, a, by division of thr
power series for sin z and cos z. AN

18. Is the cquation cos 2 = (1 — sin’z)'” gartect for
all values of 2? \

19. Prove that for the principal value’ of the log-
arithm ,".\\';

|]ogz[§—:—‘—p;

7
DA
ol p
ANy ®

N

*

if |Z — 1 | < p <1 wa;:i«;:"(ibraulibrary.org.in
*20. Give a rigorogé proof of the formula

~\
e\J .
wc smz _ 1
O a2 - (1 _ zz)lfz

N\
taking jq:a\ééount- the fact, that both sides of this equa-
tion obiﬂfain multiple-valued funections.

21 Find a relation between
~X2) arc sin 2z and log 2,
V' (b) arc tan z'and log z.
22. What is the meaning of the symbol i*? What is
the meaning of @® (g, b may be complex, a # 0)?
23. Is the formula dz* = az""* dz correct for a com-
plex @? Which determinations of the multiple-valued
functions must be used?



PHOPERTIES OF THE ELEMENTARY FUNCOTIONS i9

24. The funections
e —e° e+

shz = ——2—“—, chz = 9 =

have many properties similar to those of gin z and u»}\

7. show that, N
(a) e¢h’% — sh%z = 1, ’\
(by {shz)’ = chz, (e¢h2)’ = she, ‘N}

{¢) both functions possess the primitive g‘ﬂpd 2,
(d) sh(z, + 2z} = shz,chz, + chzlbhz2

chiz, + z,) = cheehzy, + qhzm@.
25. Along which eurves are the,\ﬁ}nctlons shz and

K. -l)
chz real? ~\(“X\



CHAPTER 1V
INTEGRAL THEOREMS

§7. Integration in the Complex Domain
(KI, 8-11)

1. Compute [2} [z]| dz along a) a straight segment,
b) the left half of the unit circle, ¢) the nght half of
the unit circle.

2. Compute [, R(z) dz where (L) denotes
a) the unit circle traversed once in the pos}tlve direc-
tion from -1 to -+1, D
b) the straight segment from z, to Lo 0
¢) thecircle|z — 2| =7 traversea‘oncc in the positive
direction. ™

3. Compute (mthout“ﬁ%d&fa@éfﬁéﬁs%gtﬁeorem) the
integral X

.‘.

f (z ~ zo){f“ (m an integer 2 0)
L \\ e <

where

a) Lisa squhre with center at z; and with sides parallel
to the cqé}dmate axes,

b) L i?;\an ellipse w1th center at z, and axes parallel to
the coordmate axes, (In this cage assume that either
) s even or m = —1}.
V' 4. Let z'* denote the principal value of the square
root. Compute the integral

g

20
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a) along the upper half of the unit circle,
b) along the lower half.
*5. Compute the integral

fg—‘:dz
L R

for the following paths:

L, : straight segment from p > 0 to r > p, KON

Ly : are of | z| = r from +rto —r through the Bpper
half-plane, RS N

Ly : straight segment from —7 to —p, \\'

L, :arcof | z| = pfrom —pto +p thxeugh the upper
half-planec. PN

*6. Lct the value of the mtegml n problem 5 taken
along L; be denoted by I, . -
a) Flndllm I,a8r — 4 o8
b) Find lim I, a8 % tﬁa"“b‘ ary orgin

Hint: Add 7z [5 1- dt 71 to I, and show that the
new integral —>O

7. Let f(z) ﬁntmuous for |z — 2z,| > 75 . Let
{, denote theeir le | 2 — 2, | = r or an arc of this circle.
Let M(r). cLenote the maximum of f(z) for |z — 2| =

I TM(?’) — 0 as r — -+ =, then

\~

N

lim f f@dz = 0.

. :”\’0.’ r—ad o

\\‘: “ 8. Let f(2) be continuous for 0 < [z — 2| = 1o,
but not necessarily at z, . If 73 (r) — 0 as r — 0, then

lim f(z) dz = 0.

r—l)

(The notations are the same as in problem 7.)
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9. Let L denote the radius of the unit circle forming
the angle « with the positive real axis. For which values

of « is the integral
f e-—lf: dz
L
defined?

10. Let L and « have the same meaning. For whlch~ '
values « are the integrals N

a) f e dz, D) fe‘”’pdz (p positive llitg;ger)
L I

defined?

11. How should one define the cony@rgence of the
(improper) integral )

b »."” o
\J‘A \i\anfriﬁ)‘g;@ibl'ary Lorg.in
& N

when f(2) is continuous, oﬁ'I'f except at b and f(z) does
not necessarily remayn‘bounded as z — b along L?

12. Let f(z) be édntinuous along the path L leading
from g to . How should one define the convergence
of the (impro;)},r') integral

e \d

:"\:l. @
Q [ 1@

EB: Cauchy's Integral Theorems and Integral Formulas
(X1, 12-16)

1. Determine the integrals in §7, problem 3 using
Cauchy’s integral theorem.
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2. Using Cauchy’s integral theorem, find

dz
Ia) 1 + 22
where (' is the circumference

a) |z — 1] =1, by lz+1| = 1, ¢) |z] =

traversed in the positive dircction. \ “x\
*3_ Let ¢(2) be a continuous function dpﬁnefd 1long

an arbitrary path L (of finite length). lee & direct

proof of the statement: the function .\ \

#()
10 = o [ 2 g

(z being a point not on L) 1@ dlffemntlable and its de-
rivative is gwen b’j&rw dbr auhbr‘al y.org.in
EANT (1
= di.
AR = e
*4. COntmua’c\Im of problem 3. Prove (by mathe-
matical indu€tion) that the »-th derivative of f(z)
(v > 1) isgaiven by
2, )
. v+ 2)! s
T = o
Q e ot =)'

'*5 Prove the following somewhat strengthened form
of Morers’s theorem (KI, p. 66). Let f(z) be a con-
tinuous function defined in a simply connected domain
. Let ¢ > 0 be a given number. Assume that

Lf(z) & = 0
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whenever L is the boundary of a rectangle situated in
G whose sides are parallel to the coordinate axes and
whose diagonals are smaller than e. Then f(z) is regular
in @.

6. Find all values of the integral

f Ve A
ol 1 + zz ',.’\f\\"ﬁ
if I may be any path along which the intgg;r"a;nd is
continuous. \\

7. Let ¢(2) be a continuous function:defined along
a closed path C, so that the funetion N

_L QLS.
J6) =i J, t on ™
is regular within C. It is ﬁ%%%%ﬁﬁw& true that f(z)
takes on along C the bofndary values ¢. Verify this
statement on the exar{g'ple: .

¢ =‘u}m circle, @) = ;1~

¥/



CHAPTER V
EXPANSION IN SERIES

§9. Series with Variable Terms. Uniform Convergence

N
(KI, 17-19) .
S\
1. The general term of the series D o, f.(2) ig-given
. 1 _ o » *0
*g) = = g7 (logn > 0}, \
n
oV
2" 7 NNl 2
b) " P O) gng‘,’; o ]
I — 142V 21—z
9) 1_ - ;)ww.?ég%figral‘y,ori,igmm
Wy - ) ‘ia_ e £ n ’
Q
e
cosne S8 (1) (=
h) n’ ’ ) z+n' k) (z 4+ n) logn
N

o/ 21':

o
] x';\'zs. — m . .
AT WA

.'\Ei{‘fd the domain of convergence. (Series a} is a special
NUDirichlet series, defining the Riemann {-function;
series b), d), ) are special Lambert series, series f) is
the general Lambert series.)
2. Where do the series of problem 1 converge uni-
formly? .
3. If 3f.(2) converges uniformly and absolutely in

26
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& (e if 2 |f.() | converges uniformly), and if the
functions f,(z) are regular in &, then Z7}(2) converges
uniformly and absolutely in every bounded closed sub-
domain of &.

4. Let f.(2) and h(z), n = 0, 1, 2, --- , be regular
in ®. Set 5,(2) = fol2) + fil2) + -+ 4+ fule). I in G
a) the limit Bm, . 8,(2) h,..(2) exists uniformly, atol’
b) the series Y owo (2R (2) — ha.i(2)] converged ihi-
formly, then the series N

$%¢ >
=) W

PIRRONNE)

A
converges uniformly in &, A\

. Show that the hypothescs gf problem 4 are satis-
ﬁed whenever therc exists g number K such that
| 8.(2) | < K for all z In 3 a%pg 511];, Brimd the functions
h.(z) are positive constanfsmonotonically decreasing to

0:h02) = a,, a,., A, — 0.
6. Using the theérems stated in the preceding prob-
lems, show thag, the series

' \“] = (—
O s

'..\;, a=1 nF

conyérges uniformly in every bounded sub-domain of
the half-plane $(z) > 5 > 0.

\ 7. Using the same theorems, show that a Dirichlet
series, i.e. a series of the form

o

a_n
nz=;. n’

eonverges uniformly in every bounded sub-domain of
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the half-plane R(z) > R(z) + 6, (8 > 0), provided it
converges (or at least possesses uniformly bounded
partial sums) forz = z, .

8. Show that the following scries possess disjoint do-
mains of convergence, &, and ®, , in which they repre-
sent. different functions. \

= )
*q, — , e \
) ; n2 1 _ zh-‘ . . '\ N/
A0
1 N A A\
L} lim — =+ ( = )
BT R e 1+“’

76 + (10 — £ &+ f:}\(lﬂ

R n=1

C) WWW db,tsaﬁhbr ary.org.in -
’ ) 1 )}
d & v 1 _’_ zﬂ.— i
Q

Where fi(z) fmd\gﬁf} arc some funections regular for
21 <1+ 6,3,> 0.
\}
27
\,\f’ §10. Expansion in Power Series
O (KI, 20-21)
"\’*

\ M. Compute the first five cocfficients of the power

series expansion Zq,2" of the following functions:

, G) e(c‘)’

a) e, b} sin —

d) log (1 + &7, e) (cosz)'’?, f) ¢ ",
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*2 Expand the following functions in a power series
Za,z™:

a) logle + (¢ + 2°)**) where ¢ > 0 and (&° + %)’

denotes that branch of the function which equals ¢ for

z=0. N\
1 1Y &

b) 2 (10g 1= z) , ¢) (arc tan z)°, X o

d) (arctanz)-log (1 +#°), ¢ sin’ z and cos’z,

1 2 ’::\\\‘; . es
Ve Oty a0
g) ‘—E— \arww,dbzfav};ii}:;'ar‘y.org.in

Em z a\ ®

S
N
S N
.3

3. Expand the {Qﬂbwing funetions in a power series
Za.(z — 2,)™ N\

z_n) 29 = 0.

Here qu(_l) = 1, and $(n}, = > 1, denotes the number
of positive integers less than and relatively prime to
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nd(2) = 1. ¢(3) = 2,6(4) = 2, ¢(5) = 4, ¢(6) =
o),
4. If f(z) is regular (and not constant) in a simply
connected domain &, then every closed path € in @
contains in its interior at most a finite number of roots
A

of the equation f(z) = a.
5. Does there exist an analytic function f(z) wéghlar

at z = 0 and assuming at z = 1, 1/2, 1/3, 7, the
foltowing values: N
a) 0,1,0,1, -, O
~NY;

1 1 1 A
b) 0: 51 0: Zs U; 'é: T ‘Q':}\V
gilliir gV
22 46 W\’W\\’.dﬁf‘}il}fibl'al‘y.ot'g.in

1234 &

23 4 5’ \\"
6. Let f(z) ’Be regular at z, and possess there a zero
of or deL\gg How do the functions

d) 5

Q i) = [ s

R = [ el

behave at this point? (It is assumed that 2, z, and the
path of integration lie in a neighborhood of z, in which
f(2) is regular and single-valued.)
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7. Why is it not correct to say that z'/* has a zero
at z = 07

*Q, Let r > 0 be the radius of convergence of the
power series f(z) = Do a.2". Find a lower bound for
the absolute values of the zeros of f(z} different from
z = 0.
AN
L~

§11. Behaviour of Power Series on the Cu‘cle o‘f“
Convergence e\

L
(KI, 24) O
(Problems 5-9, i4 and 15 from §4 dealt with .Qm‘ilar questions.)

4%
W

1. Give examples of power series’é}nverging
a) at all points on the circle of convcrgono@
b} at no sueh point,
¢} at all points exeept Giie db"aulﬂm‘ y-orgin
2. At which points of thelr circles of convergence do
the following powcer isq\des converge?

hd N ‘.ﬂ\\ g . z?n
2 Z: 1) ¥ n ﬁlﬂgn b) ; =D n — n’”

\
2n+1

eJZ\é rarr P D

0

10g log n

%3 Let all coefficients of the series Zn«n a,2" be real
nd non-negative, and let r > 0 be its radius of con-
vergence. Show that z; = 4+ is a singular point of the
function f(z) = Za,2". (Hint: expand f(z) about z =
r/2.)
*4. Show that the following series cannot be con-
tinued beyond their circles of convergence:



N

BEHAVLIOUD OF POWER 8iKRIES 31

= = w
&) E 2“!,‘ h) Z A ) Z PACIUIRASE Y
v=0 il L]

where g5, ¢» , -+ arcarbitrary positive integers =2,
o uH 32
z
d - .

) Zo @+ 9+ 1 O
(Hint: usc the results of the preceding: pwblom m:‘thn
proot given in KF, p. 101.) . O

*5. The Functlon_s A0
R \"z n
Bl J& = 2T, b) gle) = Z
n=1 ]_ — 2 n 1 ]_ ‘J—-
N

are defined and regular for | zr}(‘ 1. Show that they
can not be continued beyond@he unit circle.

*G. The power series Zn v (=D met con-
verges L{Jondltlon’eﬁl\l’v)déifa‘?ﬁllﬂﬁohﬁt&ﬂ its circle of con-
vergenee |z = 1. e 1 denotes the largest integer
not exceeding n'€ (Hmt Consider first the point
z = 1; then usptbhé result of §3, problem 14.)

7. If r = Ais the radius of convergence of the series
hiz) = 3 ;,,g it b, > 0 and Zb, diverges, then

R, \ lim (z) =

\w i1
<

whiere & denotes a real variable,

O 8. Let =a, be a convergent series. Using the result

of §9, problem 4, show that the power serics Sa,2” con-
verges uniformly on the real segment 0 < z < 1,

*9. Using the result of §1, problem 13, show that
the power series of problem 8 converges uniformly
within the friangle 2, , 2, , 1, provided the vertices z,
and 2, lie within the unit cirele.
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*10. Prove Abel’s theorem on power series: If Za,
converges, then

lim 3, ez = 2 a,

=+l

provided z approaches 1 within a triangle 2, , 2, , 1 with <\
the vertices 2z, and z, situated within the unit clrcl‘e\’\,)

g f”}
>
o
»
\/
&
'\
N\
Q¥
WL dlgk‘g)hbl ary.org.in
\&
&



CHAPTER VI
CONFORMAL MAPPING

§12. Linear Functions. Stereographic Projection

1. The transformations
. ‘O
8) w=3 -+ 5, b)w= %(z +3), ¢) w = dart b,
are rotations about a point (fixed point eflthe trans-
formation) followed by a magnification.&ind the fixed
points, rotations and magnjﬁcatigr{s; (1.e. write the
transformations in the form w — £,'= a,(z — 2,)).

2. Find an entire linear transfermation which takes
the triangle A, = (0, 1, ) in\the z plane into the tri-
angle A, = (—1, = \«?@.E{E'Elu;iﬂég}e w &y}gne. Is the trans-
formation uniquely deteérmined?

3. Show that every 8imilarity transformation is given
by an entire 1i e{’ﬂf’unction.

4. Find the %ﬂges of the following figures under the
transformgtion’w = 1/2 (reflection with respect to the
unit eirclgy)

a) Theeirele jz — 1] =1,

b) Xhe circle | z — 1/2| =

e)\The circle | z| = 7
\"\,d) The circle |z — 2, | = [ 2| > 0,

e) Thecircle |z — 2, [" = |z [ — 1> 0,

f) The circle a(z® + *) + Bz + vy + & =0,

g) The straight line %(z) = a(%m,

h) The family of all straight lines parallel to the bisector
of the first quadrant,

1/4,

33
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i} The family of all straight lines parallel to the seg-
ment 0 - z(zy # 0),

k) The family of all straight lines passing through
zg #= 0,

1) The family of all circles passing through 2z, |

m} The family of all circles passing through z, ands

2~ 25, ~ ‘“.\
n) The triangle 2, , 2, 2, , A\
0) The parahola y° — 2p1 0, P\ 3

p) The hyperbola 2° — J — 1 =0, ,ﬂ}\\'

q) The parabola y — 2* = 0. \

5. Answer the questions of the pl,e’m(‘ling probiemn
for the case of a reflection with msp(‘\f to an wrkitrary
circle {2 — a| = p. (The 19ﬂe(t1ml of a point z is t}w
pmnt 2’ such that am (z/ — a)eRhm (z — a), |2’ — a
iz — al = p’. We hawe @i)’rauhb,l)ﬁuw ergdh(z — d).)

Prﬁhmmary remarks {a_problems 6-10.

These problems de«ﬁ\ with the stereographic projec-
tion of a sphere of\xafhus 1 on the plane, We call the
point of contagf\between the spherc and the plane
(le. 2 = O Sfﬁuth Pole, the diametrically opposite
point (mm@& of z = o) North Pole and use the geo-
;_)rflphlg‘s\felmuu like meridian, equator, ete. As prime
meridiag we take the image of the positive real axis.
A polnt of the sphere may be identified by its Jatitude

\%nd longitude.

6. Find the images on the sphere of the follomng
points, lines and regions in the planc.
a) +1, +i, =1, =i,z = x + 1y,
b)|zi<1,iz R
o) Ji(z) > 0, =0, <0,
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d) J(z) > 0, =0, <0,
e} | 2| = const.
f) am 2 = const,

7. Find the relative position of the images on the
sphere of A
a) zand—z
b} 2 and z R
¢} zand 1,2 \

d) z and 1/z. P~ )

8. Constder in the planc: Y
a} a pencil of parallel straight lines,

b) = reflection with respect to thexaxis,
¢} a reflection with respeet tofhe y-axis,

d) a reflection with leqpect tQ the unit circle,
¢) a triangle.

What figures mqﬂhmfbhmﬂgtwghnon the sphere are
obtained from Lhmc By the stereographic projection?

4. Find the mNg:Pa in the plane of the following
figures on thegphere:

a) meridian® Z\ongltude A, latitude circle of latitude 8,
h) Lwo a&}dlpod.ﬂ points,
o) gr(‘fi‘&t‘ndes
a) \a»phencal iriangle,
e} the spherical eenter 4, of a cirele &
\I‘J the peneil of great cireles passing thwugh a point P,
\\ ) '¢) the point of longitude A and latitude 8.

*10). Consider the projection from the center of the
sphere on the plane. This yields a one-to-one mapping
of the southern hemisphere on the plane. a) Find the
analviic expression for the mapping of the plane onto
the hemisphere, by Where is this mapping angle-pre-
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serving? ¢) Where is this mapping length-preserving?

11. Find the general form of 4 linear transformation
with two distinet fixed points ¢, and ¢, .

12. Find the linear transformation w = (az + b)/

(cz + d) which takes three given distinet points o N
2y , Z3 into three given distinet points w, , Wa , Wy . O\

13. Let there be given a circle k, , a point z, anddts:
reflection with respect to &, , the point z, . The dinéar
transformation w = (a2 + b)/(cz + d), ad “»be’= 0
takes k, into a circle %,, , 2, into w, ) 2o in-to‘:}v; . Show
that w, is the reflection of w, with respeetnto k&, .

14. Find a linear transformation ,x@"h\fch maps the
domain interior to the unit circle’:}nto the domain
lw — 1| <I and takes z = 0.4nd 2z = 1 into w =
1/2 and w = 0, respect-ivebt:fﬁfs this transformation
uniguely determinedww dbgaulibrary org.in

*15. Find the general,foitn of a linear transformation
which maps the uppt{wﬁﬁ&lf—p]ane onto ifself.

16. The domain\fz"[’ < 1 is mapped onto the upper
half-plane by a finear transformation which takes 1, 7,
—1linto ¢, 1, .d’é‘,’ respectively. Find the mapping. What
are the imapes of the radii of the unit circle, in partic-
ular of $He'radii leading to the points 1, 4, —1, —4?

17, \The linear transformation taking 1, ¢, —1 into <,
0, &~~7'respectively maps the domain exterior to the unit

‘cizcle onto the right half-plane. Find the mapping.
What are the images of the rays am z = const., | 2| >
1? What are the images of the circles | z | =r>1?

*18. Find the general form of a linear transformation
mapping the domain interior to the unit circle onto
itself,

*19. Find the form of a linear transformation which
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corresponds to the rotation of the sphere by means of
a stereographic projection.

20. Given two non-concentric circles &; 1|z — 2, | =
ri, ka2 1| 2 — 23| = 7o possessing no points in common,
find a linear transformation taking %, and %, into two
concentrie circles &/ and k) with center at w = 0. s
this transformation uniquely determined? Whlch pmnt
in the z-plane is taken into w = 07

21. (Continuation of problem 11.) a) F md the gen-
eral form of a linear transformation w ’\=‘ Naz + b)/
(cz + d) posscssing a single fixed poiRsE .

b) Using the results of problem 1L.aod 21a investigate
the behaviour, under a linear trans‘formatlon of circles
through the fixed points and dheir orthogonal cireles.

*92  (Given the linear transformatlon w = (az + b)/

(cz + d), ad — bo, &L%ado&@mtlﬁo , seb

azyt o ' ,
Tyt =’;cz\ + d’ Y o= 0, ]_,

Investigate t-h}\@équence (z,). Does it converge? Does
it congain ;'iri,ﬁ’njt-ely many points?
\\
\§13 Simple Non-Linear Mapping Problems

:\ 1 Discuss the mapping of the penod strip —mr <

P

\‘:

“G(2) < 4= by the function w = ¢°. Find the images

of the straight segments R(z) = const., and of the
straight lines 3(z) = const.

2. Discuss the mapping of the period-strip —7 <
%(z) < 4+ by the function w = sin z. Find the images
of the straight lines R(z) = const. and of the straight
gegments §(2) = const.
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3. Discuss in the same manner the mapping of the
period-strip —#,/2 < %{z) < + #/2 by the function
w = tan 2

4. Find the images of the segments and lines men-
tioned in problem 1 under the fransformation

x -z
g — € A\ ¢
w=zghz = —, "\”.\
2 N\

5. Find the image of the doubly connecipd region
1 < | z] < + « under the transformation w};z + 1/z.

6. Find the images of the doubly comndcted regions
0 <zl <land 0 < {2z, < —f—oo* Ander the trans-
formation w = 2 - 1/z. \

7. Find the images of the Intersectmm of the closed
upper half-plane 3(z) > 0 aﬁd the closed regions

www dbrauﬁbl ary.org.in

< izl

| SR

a) 1l <z <32, b)n <Wz|<1 ¢)

under the ttansf(h*mation w=2z+ 1/z.
8. Find th@ dedages of
a) tho&e(@wﬂ > 1,0 < amze < n/3,
b) the gedtor ¢ < am 2z < #/3,
¢) the ect01%z|>1 —7r‘3<dmz< + =3,
ur{de'r the transformation w = z 4+ 1/
M. Map the domain exterior to the Plhpﬂe lz — 2, +
\l 2 + 2| = 100/7 onto the interior of the unit (_.ude,
(Hint: Use the properties of the function w = 2 +
L/z)
10. Map the sector |z} < 1,0 < am z < 7,3 onio
the unit dise,
11. Map the following domaing onto the unit dise:
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w) The interscetion of [2] < 1 and |2 — 1] < L
b) The closed region 2] < 1, J(z) =2 0.

¥12, Map the intersections of the closed reglons
2] < 1 and 'z — 1/21 > 1/2 onto the unit disc
! < 1.

*13 Vap the half-strip —1,/2 < Niz) £ 1/ 2, 3(z )

() onto the unit dise.

"14 Map the domain bounded by the pwmbold
Fiz*) = a > 0 (and containing the ougjm}) {mfo the
interior of the unit eivele. 2\

*15. Show that the principal valuc.eft }ho logarithm
satisfies the following inequalities: |\

N

a) jlogel |10g(1—z)|§‘v‘§r]}31i|z| |1 —z|,

VIA
AV

i.e. wh e\fl\m@f%i%l;afy.org,in

| ”{ .
by !logz | éiﬂ,&gz 1 ‘ when 1z — 1} < 1,
. :\ 4 | =
c) | log &'_ 2|z \ 10{%“ when !z | <.
'\“ >

*“}\(‘v Tsing the results of the pre(‘e{hng__‘ problem, de-

te\mne in w hu,h parts of the plane one of the three

x\rm.mbcrs log 21, ilog (1 — 2) |, jlog (2 — 1)/2] is

Q smaller, than the other two. (The axmbol log denotes
here the principal value of the logarithm.)



Part II-ANSWERS

CHAPTER I
FUNDAMENTAL CONCEPTS ()

§1. Numbers and Points "}*'&,

1.a) —z, b)Z, ©) —Z, d) @@, eN=12 .

2. The proof follows by squanng both sides of both
inegualities.

3.e) and f) Hyperbolas (paif§ =of stright lines for

= 0). To verify the statement set 2 = x + y.
g\ and h) Lemmscates\b%faa&tb §1 et zl =lz|-{z—1]
is thc, product of the dxsﬁances of 2 from 0 and 1,
| 2* — 1| is the product of the distances of z from 1
and — 1. k) The righthalf-plane including its boundary.
1} and m) Appolenius’ circles. n) The perpendicular
bisector of théegment 2, + - - 2, .

4. Tf and\dnly if the difference quotient is real, since
the a1re@3;})n of the numerator (from z; to z,) must be
equal%r opposite to that of the denominator (from z,
to 22)

~C5. If and only if the eross-ration is real. In fact, the
four points are collinear if and only if both (z, — 2;)/
(2o — 2z3) and (2, — 24)/(zs — 24) are real. If the four
points are not collinear, the amplitude of (2, — 2;)/
(z, — z;) can differ from that of (2, — 2.)/(za — 2.
only by a multiple of =.

6. The identity is proved by setting z = = + 2. It

41
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expresses the fact that in a parallelogram the sum of
the squares of the diagonals equals the double product
of two adjacent sides.

A2 T AaZs
. 7 = T
‘ Ay A
Zt 2t 2 Mar g oAz '\..'\.
gy afEEE gy ha b
b EL) 3 H ) )\]_ _1_ )“2 _i_ )\3 "" N/

¢) Show that in 7 z lies between 2, and zgﬁ%ﬁm.énever
M o> 0,0 > 0, and apply this result t\\'i(fé\

9. The proof follows by mathemat 1c:3{mdu{,t10n from
the results of problems 7 and 8. \s

10. (/on‘qder the polynomml (z — z)-(z — 2
(2 — 2) = 2° + a,° + @\t o5 . We have o, =

— (g + 2y -+ 2zy) =i cﬁmnbfa,yongul 1/z; =
J7=1,23. Thua A\

.’ 3

ay = 212 + 212 +\3z~1 = 313931(31 + 2, + 23)

It follows that %‘}% z; are roots of an equation 2° —
aa = (}, |a31 = 1. Hence Zs = €2, , 23 = (7 where
(oo% ,{ﬁ(} + 7 sin 120°).
Lsmg the same method, we can shou that t]m
2; (_,Lé 1,2, 3, 4) are roots of an equation 2* + a,2° +
Hence there exist two numbers o and b, such that
”‘|~a| |b|—-—121——;v3-—{1,42—-*—24——b
12. 1f and only if (2, — 2)/(2, — 25) = (2] — 2/
(25 — 23). Tn fact, this equation expresses the fact that
the dngleq at 2z; and 2§ arc equal, and the sides z,2; ,
2,25 and 2124, z5z) arc proportional,
13. a} Choose a number r such that » < 1, » >
gy r 2 et For (2] < v we have (|1 — 2§)/
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(1—jz) <14 /(1 —r)=K,.Now we congider
the triangle A = (1, 2, , 23}, 25 being the point on
! 2| = 7 such that the segment 2, --- 1 is tangent to
this cirele. Points ¢ of the triangle 1, 2, , 2, with | 2| >
# lie within the (PIand) triangle A. Set r, = {1 — »%)'7%,

Then r, = [1 — 2;{. We denote the angle in A af 1
by 2¢, (md note that 0 < (ﬁ:o < 72 1, = cosip).
All points of A {except 2 = 1) are of the iolm\'z =

1 — p (cos ¢ + ¢ 8in ¢) with {) < p < cos ¢0”’~’<¢| <
$, . We have —2p cos ¢ + p° < —p 00%@1 -+ 1/4p°
cos” ¢, , %0 that

\J
P \s\ 2
1 — {1 —2pcos¢ —l—:px 2T cos ¢y’
Le. "’a
\ www branﬁsblary org.in
= K, .
1—|.<|_80b¢>u ’

. MY
To complete thegheoof we must merely choose for K
the farger of the two numbers K, and K, .

N/

NS/ 1
) N K = mm—,
\,\;. 217 _ 1
O
»\1\, §2. Point Sets. Paths. Regions

N

. All equations of the type considered may be ar-
I’anged in a scquenee, since for every positive integer
f: there is Onl\ a finite numher of equations such that
E<n+ al+lai+ - + | a, | < k + 1. Since
every aquatlion has ut most n distinet roots, the asser-
tion follows.
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9. The set of all real rational numbers is countable.
In fact the array

123 . »

1) 1) 1) ? 1!

123 n A
BIGIL 5y 2 N
22 2 *2 -
123  n AR

31 31 3: : 3: « "\\.

W

contains all real rational nmnbm"gi" This array may be
rearranged into the sequence.
lwww dmemhbr ary.org.in
1;212’3:3>4)§: 3:415 T
Q

uging the so-c Lkéd’ “diagonal method.” (We write
down first albuumbers p/¢ with p 4+ ¢ = 2, then all
numbers withp + ¢ = 3, ete., omitting any number
already a»pp’earing in the sequence.)

NGQ Jet 1y, 15, -+ be a sequence of all real rational
nun'ﬂ}ers The array

‘s\

N\ I I P I T L T
N
T2+é7'1;?-2+@'r2; :?2"}-?:?11) *

T3+7:T1, e
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contains all elements of the set considered. It may be
rearranged info a sequence by the diagonal method.

3. The proof follows closely the one given above.

4. The four numbers «, A, u, 8 are given below.
Numbers belonging to the set eonsidered are markeds
by asterigks.

Oy
& —10Y7 —107 410"7 +10V%; Kok
| N
B oF 1 e, €; '«'\'('\
H e! y H ..\}
oV
o) 0%, 1, 1, 2*; &

£
o/

d) 0%, + o, + o, +; “f.:':.

L W
www.d}af’%ulibrary,org,m

A N\
e) 5 + o, oo, Ao
A0
L~

P 0,0, 1% 2

. P,
g) 0, Ope/a*;
'® M
h);@z*, 1%, 1%, 2%
\i.\‘f;’
O 5%
\/ 1) _13‘.! OJ 21 "2_;

1* 1*
9 3 9 3
5. Our set may be constructed in the following way.
Divide the interval 0 -+ I into 10 intervals of equal

k) 1*, 1%,
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length and erasc the interior points of the 1st, 3rd, 5th,
7th, and 9th subinterval, as well as the point 0. Divide
each of the remaining 5 intervals of length 1/10 into
ten intervals of equal length and erase all interior
points of the Ist, 3rd, 7th, and 9th subintervals Of,
length 1/100, as well as the lcft end points of the 5 inx
tervals of length 1,/10. Now repeat this pl‘ocedure\'{’f'ifh
the remaining 25 intervals of length 1/100 ant’ con-
tinue this procedure ad infinitum. The remaining points
form our set. In fact, after p steps those arid“only those
points are left which admit the infinite” decimal ex-
Pansion .aqay - -+ agag., - with apy - a, odd.

Now let w, be u point of t-he‘.sﬁt-".’ After p steps z,
belonged to a non-erased int.en:-'a'l’uf length 1/10”. It
follows that every neighborhasd of 2, contains other
pointsof the set. ‘Phix Prepbibiare 98dPtion

The set constructedSh this problem (a so-ealled
Cantor set) possessesihany interesting properties. Oh-
serve, fov instaped that at cach step we crase half of
the intervals, ;.«:U\t-ha-t- the total lengths of the 5" in-
tervals I‘PII]él\il'ii'Tig after n steps is 1/2°, The total length
appmach@izem as n — o, Nevertheless the set con-
tams_athMumbers. aey - with odd «; . (Note that
a nymber like 352 belongs 1o the set since .352 —
3309999 - )

\ 6. If a does not belong 10 the set, then each interval
@ o+ e (e > () containg at leasi, one point of the
set, heuce infinitely many such points. « is a limit
point, s0 that @ = A. The same argument holds for
3 and p.

7. No, sinee the set contains all real negative num-
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bers. 1t covers the region interior to the parabola 3° =
1 — 22 and the parabola itsclf.
8. a) z =0, +1/m, + i/n;
b) all z for which {21! < 1
¢) all points of the plane;
d) all points of the plane; .
) all z for which [ 2] < 1. <O
9. Yes. This follows from the eopstruction Qflt}w sct
given above (see problem 5). Whenever a §0Int a, is

Q"

. being erased, it js either an interior point@fan interval

h
3

which is being erased, or an isolated Jaft’end point. In
the latier case either x, = 0, or the,points immediately
to the left of x, have heen crase‘d‘}p"l‘e\-‘iously. It follows
that a sufficiently small neighborhood of a point ¢ not
in the set contains no infg%s of the set. Only points
of the sot can he Hn{iE iR Prary org.in

10. Yes. (See defipition in KI, p. 7)

11, If ¢ belongs{te A and a cirele about [ enclozes
1o points of J { it encloses only points of 3, so that
¢ 18 an interiov point of 3,

12. Leb @ e the set of boundary points of M, Z a
limit. paint of R. For every p > 0 the neighborhood
[ \"\Z! < p/2 contains at least one point z, of M.
"Lhis "point z, lies in the ncighborhood iz — Z | < »p.

¢Thus Z is a limit point of 3. As a limit point of R it

‘can not be an interior point of M. It follows that Z
belongs to 2. '

13. Assume there is no number d possessing such a
property. Then we can find a sequence (z7) of points
of M’ and a sequence (z.') of points of A" such that

"2 — 27| < 1/n. Since M’ iz bounded, so is (z)
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Thus there exists at least one imit point ¢ of (2)). ¢
also is a limit point of (27/). M’ and M’ being closed,
¢ belongs to both M’ and ", This contradicts our
hypothesis.

Now let d, be the least upper bound of all such d.
d, is finite and possesses the required property. Thus
d, 18 the largest d. (d, is the distance between A1’ argd
M"; el KI, p. 8) O

14. Let E, denote the point of the curve fex ~which
lyt =2 = 2/(2 — 1}, N the point for lech y =0,

= 1/k. The length of the polygonal pﬁ‘t\h N EN,
exceeds the double ordinate of E, johence it exceeds
2/k. Since the serles = 1/% dwerge@ it follows that in
an arc of the curve containingithe origin we ean in-
scribe a ‘“‘segmental are” (see Ki p. 17.) of arbitrarily
large length. — dbfaunbn ary.org.in

15. M is a domain. In Jact, let 2, = @, + 4y, be a

point of M. If ¢, > 1ythen all points z with [2g — 2| <
-~ 1 are points” c}f M. If [y, | < 1, there exists a
p051t1ve numbérs & such that [a:[, | > & and
[:to:izl/nj>5n--l2 LHO < p < dand
P <, theh all pomts z with ] 2y — 2| < p are points
of M. Now let 27 = o' 4+ 4 and 2”7 = 2" 4 %" be
twp\ﬁeints of M. Let p > 1 be a real number such that
23y, p > y”. 2 and 2’ may be joined by the path
~{{ying in <) which consists of the straight segments
VY e a dp, 2l dp e ip a faip - 2

All points on the real axis and all points on the ex-
cluded segments are boundary points of M?. There are
no other boundary points. .

t/2 1s an fnaceessible boundary point. There exists no
path (in M) leading from z, to 4/2. In faet every such

"\
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path p would have to contain infinitely many pairs of
points 2’ = z’ + 4, ¢/ = £ + 4y’ such that
2/ — 4/21 < 1/4, 12" — ¢/2| < 1/4 and 2/, 2’ are
not both contained in an interval (I/n, 1/(n + 1)),
The length of any path in I joining 2/ and 2" must,
exceed 1/2. It follows that p can not be of finite length S

16. Yes. In fact, S is a Jordan arc (one-to-one €on-
tinuous image of the segment 1 > ¢ > 0}, and an’ele-
mentary computation shows that the length of § is
21 2 j €. £ \

17. Consider first a bounded plane reglon ®. Let M
be its boundary set. I M is no‘QGounected there
exists a simple closed path cfmtalmng points of M
in both its interior and exteriaf’ tegions, If such a path
exists, & is not connected gince the parts of M within
and outside of p aré clo b’&”’i‘“ﬁ?éﬁfsff&wg that our asser-
tion is correct for bounded plane regions. The same
argument holds o the sphere where all regions are
bounded. ™V

18, Yes. The\:)oundary of Pt is connected.

19. Let p be a simple closed path separating the two

cints nl&t in 9. Since Pt is simply connected, p con-
tamS\pom‘rq not belonging to M. Since this is true for

O\
anysuch p, the assertion follows.

:.\'.



CHAPTER II
INFINITE SEQUENCES AND SERIES

§3. Limits of Sequences. Infinite Series with Constant

Terms ~

The dcfmtmn of a limit point implies that ThQ

dommn 0 < 'z — ¢ < 1 contains & point 2, Ol
Z.,., thatl the dmmun 0 <jz—¢' <1/2 con:{am» i
point z, with n > n, , say z,, _, and in 081191‘31 that for

v > 2, thedomain 0 < |z — ¢} < 1/ conﬁma a point

Zq \\11311 n > n,.., 8%y 2z, . The %qt\nce of numbers

2, = &,, converges to {, 4

2. The theorem and proof ape L%talned from those
of problem 3 by sctting p, ul"‘Tho theorem does not
hold for ¢ = e, P_rmmphbps@mlﬁglycﬁmz% = 2k — 1,

E=1,2 - 'lhosequenoezl,zg,---,le t]w
sequence 1, —1, 3, &3, 5, —5, -+ converges to o
the sequence 2] ,gﬁ’\ -, le. the sequence 1, 0, 1, 0,

1,0, -+ hag no\ﬁmlt The theorem is true in the reaﬁ
domaun, prumded a definite sign is attached to the
symbol o™ (2,) is a sequence of real numbers and
Zn ——>+\zx> (Olz — — ), then 2, > 4+ o (or 2L —
— ® }‘

BVIf ¢ = 0, then for every e > 0 we can choose an
~Jad such that | 2, | < ¢/2for v > m, and a n, > m such
Vthat L e + - -+ Do /P < /2, forn > n, .

For n > nywe have | 2f| < e If ¢ %= 0, apply the pre-
ceding reasoning to the sequence (z, — {).

4. The proof iz similar to the preceding one. Assume
that ¢ = 0 and that ¢ is a given posifive number,
Choose an m such that 2, < 3/2 for » > m, and

50
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a n, > m such that | bz, + -+ + bz, |/| b +
oo + b, | < €/21or n > ny . This i possible, for the
numerator of the preceding fraction is constant and the
denominator convergeg to infinity since | b, + -+ +
b | = B0 b | + --- 4 ]6:.0). For n > ng we have that

e 1 lbanl+ ot ]b] o A0

izl | < = = — . .2

ST T ] D
If ¢ = 0, apply the preceding reasoning to the ;seq‘ﬁ“énce
(zn - f) "“' .

28
5. Given a positive e choose an m suelrthat jz, | <

e 2M for v > m. If n > m, condit-ion\%,hﬁp]ies that
O

ESS-SESE R }%&\1 +

".,;.s.: | + E

www-ql?zéyl'ibréty,lolggffn| | 2 53

If m is kept fixed andag w , each term in the finite

sum converges to §-{eondition 1). It follows that there

exists a ny > m\ﬁé}’i that this sum is less than /2 for
n > ny. Hence)f 21| < eif n > 0.

6. We hawve’

o
3;: - 44(:1?:'“: a-ﬂi(zl - f) + a’ﬂ?(z2 - g.) + et
. .s’\
al ‘{_ a'm;(zrx - g-)‘

SN

\”\Siﬁce (2, — ) — 0, the right hand side —0 (problem 5).
Since A,¢ — ¢ (condition 3), it follows that z, —
The theorem of problem 4 is obtained by setiing
U = bﬂz(bl + b+ - + bn):n - 112; SRR | <
p < n, that of problem 3 by assuming the b,,'to be
positive real numbers, that of problem 2 by sctting all
bn equal to 1.
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7. 8) The hypothesis implies that 2z — ¢'¢; the
assertion follows from the result of problem 2.
b) We have

_a -+l - ) e e — )
n -

N

7 AN
i A O

\,
n

+ {7

el
77
<

The second term oxn the right hand side —-'»}"\ " (prob-
lem 2). The first term — 0. This followsNrom problem
5 by sefting a,, = 2z0,:../n. These;}}ﬁmbers satisfy
conditions 1) and 2), for the seqqe’r)}e (zI") is bounded.

¢) The proof is similar to, that of b). We have
2, = [amz:f(zi - f:)w‘j'db%éﬁ{;&}{?é«ofgpff) + -+
Gl (2n — I F C1002h T 0ana®s’ + -+ auzl].
The numbers a,,2:/,., satisfy the conditions imposed
in problem 5 on thewtimbers a,, , since the sequence
(2!)) 1s bounded. \Iiie’nce the first term - 0. The num-
bers @, . ,.. sitisfy the conditions imposed on the
numbers a8 problems 5 and 6 (condition 4). Tt fol-
lows that/#he second term — ¢,

8. :J.‘ikie’assertion follows from that of problem 6 by

setting a,, = %(;) Condition 2) is satisfied since

\ \‘n) < 7", condition 2) is verified by setting M = 1 and
condition 3) holds since (?1?’) —- (g) + -+ (:') =
2" — 1.

9. Seta,, = 2.7, ., and apply the result of problem 5.
10. a) Assume that the series converges. For every
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positive ¢ there exists a n, such that for n > n, and
alp > 0

{Cn+‘l +cn+2+ s +Gn+w{ <€-

If n > ny, then | T,] < & Hence T, — 0, and the
condition is scen to be necessary. Q)

b) Assume that the series diverges. Then th@re
exists a number ¢ > 0 such that for any number o
there exists af least one (and hence mﬁmtel_y many)
pairs of numbers n > n, and p such that\

| €uir T Carz + 0 F Casp ]

Thercfore there exists a sequenc ‘OT pOSltlve numbers
p. such that the corresponding(sequence 7, does not
converge to zero. This shows that the condition 1is
sufficient, www.dbyg a‘uhbl ary.org.in

11. To prove this 1dentlty set @, = 5, — &, (for
v =0, a, = 8) andceollect terms with the same s, .

12. By virtue ,@f};roblem i2

nima \\ ) ntpa

= > a,b = > 8{b, — byu1)

v=-n+l \ y=n+1
O
7 \&
,§~ p {sn n+l sﬂ"‘ﬂnbﬂ*’!’a‘l’l]

The hypotheses and problem 10 shows that T, — 0

~for every choice of the positive numbers p, . This

implies (problem 10) that Za,.b. converges.

13. a) Since the s, are bounded and b, — 0, 8,0p41 —
0. Since E,,,o (b, — bysr) = bo — bas1 , the series
Z(b, — b,,,) converges; it converges absolutely since
b, > b,,, . The sequence s, being bounded, it follows
that Zs.(b, — b,.,) converges.
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b} a,_, > b, > « implies that b, — ay 2 a. Since
the sequence (s,) converges, so does the sequence
Sﬂbn+1 . Since Z:=0 (bv - br-i—'l) = bﬂ - .{)ﬂ i bl’} = g,

the series =(b, — b,.,) converges absolutely and so
does Zs,(b, — b,.,) (for the sequence (s,) is bounded).
¢) Sbpr — 0. The convergence of Zs,(b, — bnﬂ)"\
follows by the argument used in the first two cases( \
14. Asin problem 11 we have O
ntm ntp “(”}5
EH ab, = Eﬂsv(bv = bosi) = Saboo D
LN

M

r=n+1l

n+p .‘\;
K{ S 0 (b, = K 4 0,

N\ ¥
L D
Ne/

www dbraulibragy ¢ngip p)/ “bn+p+1}.
Tt follows from the hpotheses that | Do ab, | will
be less than any preassigned positive number e if n is
sufficiently Ia.rge.\

N
§(k,, Convergence Properties of Power Series

1 213) I'm‘ all four sertes r = 1;

»\wb) r= 4o, r=17r=1(
Vo) 7 o= ¢ (since ¢/ = n! nl s 1 fe),
r = 0(sincc e, = ~¢e7’n— + o),
ro=e(since gy = (1 — 1,/n)" — 1,(»),
r = 1 (sinee &, = 15" L " = 1);
d) r=1(since 2 < 7(n) < n forn > 2),
r=1{since 1 < ¢(n) < n);
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e) 7 o= 1,377 (since lima,™ = lim (3" 1" = 3%,

I3

ro= 1 (since | < a, < w7), v = 0 (since
lim )" = lim (log k)" ™'".

2.0a) If | 2] < |z, then  z/z! =8 <1, || =
| .20 -8 < K-n"-6" The scries =n'- 8 converges for
0 | < 1. L\

b) This case can be reduced to the previgus one.
In fact, the hypothesis implies that \{anzo | =
| (ay + -+ + azly — (a0 + - F@hu )<
2K )

3. For the first two series we edu*state only that
R > min (r, 7'), l.e. that R > (r(—P vo— = 1)/2
In fact R may take on any ydhie consistent with this
inequality. If 0, 5.1, fin ety drglih fOF nstance,
then r = ¢ = | and R =+ o (for the first series).

For Za,alz” we hav&R > 7. In fact, for every e >
{} and for al} s-fl.lfﬁciént]y large n

)
| an.JIN\S%—!- €, | a; ['" §?71;+e

80 t-ha:t\zlz.t\z.;-a.,i (A VA A SR being a number
whicl¢onverges 1o 0 together with e (Give an example

0f~'s§r~i.es with B > m'.)
,\'7."’]5‘01' =(a,/al)z" we have B < r/r'. Proof. Let € be an
\\ “arbitrary positive number. The inequality | a. |1 >
1/r — € holds for infinitely many =, the inequality
| al '™ < 1/¢" + e for all but a finite number of n.

If both inequalities hold, then

Ve 1y —e T,
> . T 7 €,

17 + ¢
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Thus lim | a./al ['* > #'/r. (Give an example of series
with B < r/r'.)

4. The first $wo series have the same radius of con-
vergenee as Ta,2" (since n'” — 1). The third series
is everywhere convergent (n!'" — +® and {a, ' <
1/r 4 € for sufficiently large =, so that lim | a,/n!|"" =
0). The last series diverges for z # 0if r < + . (IQ
this case }a, | > 1/r — ¢ for infinitely many, 7
No general statement can be made concermng the case
r= +ow,

5. The series diverges at z = 1. It con”\%rges at all
other points of the unit circle. ProgfhIf |z] =
z # 1 then the partial sums of 227 a\re bounded at z
since

) ’_: n+1‘ f 2
142+ +*@'*"¥-jﬁf3j[3fi?“§f%”é——] T

The coefficients 1/n dgcf'é'ase monotonically to 0. These

two statements imply the convergence of 22°/n (see
§3, problem 13ak\ "

6. The serié 2 | a25| = Z|a,|r" converges. For
any fixed c > 0 we can find a n, such thast
‘ au*\{l}‘wl + i an+2 I Tn+2 vt _I_ | an+'p I ,er‘D < €

whenevern > 7, p > 1. Thus
Ia»mz"”l F | @Guea™ |+ o0 3,277 < e

whenever lz] <7 n > no, p > 1. This proves the
assertion.

7. The result of problem 5 implies that our series
converges at all points of the unit circle, except at those
points z for which 2° = 1, i.e. except at the Vertices
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of an inscribed regular p-gon with one vertex at 2 =
1.

8. a) The assertion follows from the fact that | a | <
1 for sufficiently large n.

) The assertion follows from the result of §3,
problem 13a (cf. problem 5). At 2 = 1 the series may.
cither converge or diverge. A

9. Use the result of §3, problem 13c. Y

10. No general statement can be made. (I‘t is true
that the series Z(g,7")z" has the radius of- Qonvergence
1, but the cocfficients (a.r”) may or &Y. wiot approach
0.) O

il. B > min (r, p). In faet, 1f}l‘< r, B < p and
|2] < R, then the series Z¢,5>and b2 converge
absolutely and so d@ﬁswmuhﬁﬁamge& show that R

may be greater than the smaller of the two numbers r
and p or egual to this smaller number. (Consider the
cases: Za2" = I hi= 7 Zas = I, Zhe =
(1 — 2)¢°) A\

12. We make use of the following theorem on infinite
series. Gix-'eri\“:iﬁﬁnitely many absolutely convergent
serics \\“

AN
”:.f(«'}0+001+002+ oottt e =0,
O,,\;:\':'Cl(]_!_c“ ‘et ot o = (,,
\.
set
[l Flew| + -+ loml+ 0 =mn,
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If 3. converges, then all series

Con + Cin - Con+ o O+ =0

converge, and

Sceo= 2 Ch.
k=0 n=>0 0;\':\'
A detailed proof of this theorem will be foundﬁ% the
book Theory and Applications of Infinite Sefees by K
Knopp, Blackic and Son, Ltd,, 1928. (¥

Set \4

AY;
A — wy) = Al{ag — wy) + 'E’:ﬁn(z — 2)"]"

k-1

= Z\\r@;}é}igﬁau‘{‘llg?@?y.org-in (k = 0: ]-; *t )
These series converge ab%olutplv forlz — 20| < r. We
must have - \

by = A, + h\wan - Ufo) + Az(ao - %U) -+ -

so that | d H w0 | should not exceed R. If | gy — wy | <
R, how e”er then

(0, Nawwow e — 20 | + | @z ~ 2)? |

O | F oo <R
N for sufficiently small values of | 2 — 2, 1.

We choose a R, such that [a, — w,| < B, < R
and a p, 0 < p < r, such that the right hand side in
(Y remains <R, forlz — z,| € p. For |2 — 2| £ p
our expansion of W is legitimate and ylelds W =
g(f{2)). In fact, we may apply the theorem stated above
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to the case cin = a,"(z — 2,)", |2 — 2, < p, since
we have v, < | A4 |-Ri so that Zv, converges

To give a better estimate of the radius of convergence
of Zb,(z — 2,)" we would need more information con-
cerning the function-theoretical character of the fune- '

tions f(z) and g{w).

13. We have OV
w’ = 1 = -1— - 1 ';:\,}
o + @z o - 4% 1+ [(alxao)Z"F‘:"']
1 S
a, @
_a:{l‘[a;” 1+ [a(3+ ]
N
-+ }

www.dbr auhbral Y.org.in
According to the result of¢ prt)blem 12 we may obtain
the expansion of W b) ‘computing the powers of
[{a,/ag)z - (az/ao)z & -] and collecting terms. The
resulting series \r{[ Certainly
p being the umqu\y detormmcd positive numbet such
that <)
Ni['P‘f‘ lazfp® 4+ -+ =[]
Set T% = b -+ bz + - -+ . We have that
,(gn\#‘ 013+(lgz + - )(bn+b1z+b2za+ ) =1

XU that -

aub|]= 1
b, + ab.y + -+ + aby = 0, n=12 .-

From these equations we obtain at once the recursion
formulas for the coefficients b, .



60 INFINITE SEQUENCES AND SERIES

14. If | 2z, ] = 1, then the power series

v 1 (z_)

n \z
converges for | z| = 1,z £ 2, , diverges at 2 = #, (sec
problem 5). Let the p preassigned points be z, , 2>
, 2, . The series KoY
e\
= 1 ( 1) R %
EAE A
,?-:1‘ n + 3 + z'; '“\ 3
possesses the required property. AS

15. Yes. The first example of such Q\,serles was given
in 1912 by W. Sierpifiski. A clear. quentatlon will be
found in the book by E. Landﬁu Darstellung und
Begrindung mnzge@m%r%lgmgbyﬁg% der Funktionen-
theorie, 2nd edition, Berli 1929, p. 71. The proof is
too complicated to be reproduced here.

&
.\\\,

\y/



CHAPTER 1II
FUNCTIONS OF A COMPLEX VARIABLE

§5. Limits of Functions. Continuity and Differentiability,

1. a) f(2) is continuous at z = 0 and at all poidts' 2
for which | z [ is irrational. At all other pointsf(z) is
discontinuous. Progf. Assume that |z, | is ireational.
For a given ¢ > 0 there exists a sufficiently #mall circle
with center at z, such that for all points)z within this
circle and with a rational {z2{ = @fp, ¢ > 1/e It
follows that for these points z | ﬁ(j —J@| < e A
similar proof holds for z = OANow let | 2| = po/¢s
be rational. Ch@qs@dg;aﬂu@.@upglo;gﬁt 0 < e < 1/g -
There are points z arbltraﬂly close to z, for which
[f&) — fzo) | > ¢ m‘fact all those for which | 2] is
irrational,

2. The assertiot’ 1% an almost immediate consequence
of the deﬁmtlo}b of continuity., For any given ¢ > 0
there existsya’s > 0 such that |f(2) — f(5)] < e
whenexe I\z — ¢| < & Since 2z, — { we will have
|z, —¢8% < & and hence | w, — f{§) | < e provided
n >%0 , no being sufficiently large. This shows that
Wi £(0).

J3. Assume f(z) to be discontinuous at {. Then there
exxsts a ¢ > 0 such that every neighborhood of §
contains at least one point z for which | f(2) —~ f(&) | >
& . Let z, be such a point in the circular neighborhood
of ¢ with radius 1/n,n = 1,2, --- . Then |2z, — ¢| <
1/n and |f(z,) — f@)| = e ; 1e, z. — { but not
f(z.) — f(¢). This contradicts the hypothesis, :

61
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4. The function f(z) = 1/(1 — 2) is continuous for
| z| < 1 but not uniformly continuous. In fact, let for
each point 2z, | 2| < 1, p, denote the largest number
such that |f 2 — f(z)] < 1 whenever |2/ — 2} <
p, and | 2| < 1. The lower limit of the numbers p, is
0, since for z = 1/, p. = [1 — 1/(n + 1]

(1 — 1/n) < 1/n’. A\

5. Since z = 0 in the domain considered, the funcilon
is contmuous The continuity is uniform. In fac‘r, set
f(0) = 0. Then f(z) becomes continuous at 22 =0
(proof?). It is even continuous in the dom&ﬁl lz] < 2
hence also in the closed domain |z | N1, It follom
(KI 6, p. 25) that f(z) is uniforpily continuous in
|2} < 1 and afortior: in the subfiomain 0 < {z] < 1.

6. The numerators  andqslenomaipabessn of all five
functions are continuous inithe whole plane. The de-
nominator of f, never \jghléhes. The denominators of
the other four functions vanish only at z = 0. It fol-
lows that f; is conintious in the enfire plane and f, —
fs ave continugu$.everywhere, except perhaps at z =
0. The functions f» and f, are discontinuous at the
origin, fordboth have the limit 1 when z approaches
the ongm\from the right along the z-axis, and the limit
0 wh&\ z approaches the orgin from above along the
y—axzs The functions f; and f; are continuous at the

~~01'1g1n In fact, since | R(z) | < |2} we have

1 fs@ | < RS 2] 1 AH@]SRE) < |2

If z— 0, then f3(z) — 0 = f;(0) and f,(z) — 0 = f£:(0).
7. The answers are the same asin 6, the proof similar.
8. Uniform continuity of f(z) implics that to every

€ > 0 there exists 2 8 > 0 such that | f(z") — f(2)
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e whenever |2/ — z| < é (and |2'| < I, |z] < 1).
Let (z,) be a sequence satisfying the hypotheses of the
theorem. There exists a number 7, such that | z, — ¢ | <
8/2 for n > n, . Thus, for n > n,, m > n,, we have
that |2, — 2z, | < 6 so that [f(z,) — fiz.) | < e It
follows that w = lim,_. f(z,) exist. To show that w de<\
pends only upon {, consider another sequence {(z8) a*a,t}l\s-
fving the conditions of the theorem. w' = hmﬂ_,w\f(‘,,’,)
exists. Since the sequence z, , 2{, 2., 25, - bdtlSﬁeS the
hypotheses, the sequence f(z,), f(z1}, fzz) j(zg),
converges to a limit W. But since the lmht of a con-
vergent sequence is identical with ﬂ{a& of any subse-
quence, W = w = w'.

§. Let ¢’ and {” be two boundary points, f{(¢"} and
F(¢") the correspending-dimitgpdugsnof f(2). Let ¢ > 0
be given and & determined{as in problem 8. We shall
show that [f(t) — &) | < e provided that
[¢ — ¢ | < §/2. Indact, if (z7) and (2’) are sequences
of interior points\eonverging to {’ and ¢, then
- < S}Q'implies that | zi — z” | < & for all
suﬂlvlently lgxge n. In this case | f(z1) — f(z) ]| < ¢,
and sinces ﬂ‘zn) — f(0), fz)) — f(i'") also | f(§) —
7'y | &¢. This proves the (uniform) continuity of
the b\mdary values. If these boundary values are used
tasdefine the function f(z) for | z| = 1, the resulting
;funchon is uniformly continucus in | z | < 1.

" 10. &) The funetion f(z) in problem 1la is nowhere
differentiable. It could possess a derivative only at
2z, = 0 or at a point 2, for which [ 2, [ is irrational, since
at all other points the function is not even continuous.
In every neighborhood of z, = O there are points with
with f(z) = 0, and also points with f(z) = z (the points
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2 = 1/n). It follows that for z, = O the difference
quotient

Dl = L2216

1]
takes on the value 0 and 1 in every neighborhood of
zo . J7(0) does not exist. If z, ¢ 0 and | z, | is irrationaly
then D{(z, z,) = 0 for |z| = |2, and D(z, %)=
1/lg{e — 23] for [z} = p/g. In particular, if* p2 | =
p/q and 2, z, and 0 are colinear, then w'\'\

1
| Do) § = = L]
It is known, however, that for ;aﬁjrx\irrational number
v there exist positive integers™p and ¢ for which
| p — gv | is arbitrarily smalkeltfeliowsethat | D{z, z,) |
becomes both ¢ and arbit;*é,i'ﬂy large in every neighbor-
hood of z, . Hence f'(z) does not exist.

b) The functiondn b is differentiable at all points
of the imaginary\axis (except for z, = 0 where it is
discontinuous)’ and at no other point. Proof: if z, =
0 and z — zg. along a straight line through the origin,
Dz, zo)»\-~> 0; if 2 — 2, along the circle | 2| = | 2|,
D(zg @ — co0s 8, = am 2z, . Hence the function can
be differentiable only if cos 8, = 0;ie., if R{z) = O,

~inwhich case f'(2,) must vanish. The function actually
is differentiable at such a point. In fact, set am z =
6 = /2 ~ 4. For z sufliciently close to 25, [ 2 — 2o | >
| zo |-sin 4, so that

| Do) | < oS ot ly2)
lz I 81111]' ‘zni

provided | z, ~ 2| is sufficiently small.
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¢) The function in 5 is not differentiable at z, < 0,
since [Mz, 2oy = 0 for lz| = | 2| and D{z, 2z, —
| 2o |TPeTV g e o2 0 when 2 — 2, along a straight
line through the origin. If one sets f(0) = 0, the function
becomes differentiable at 2z, = 0, since | D{z, 0) | =

VS 0 for 2 — 0,

The proof follows by direct computation.s I‘he
mn‘putdtlon may he avoided by noting that &+
Wy o= ¢y + s = ¢, where f = ¢ + i anghl usmg the
fact that a regular analytic function @‘fx a regular
analytie function is itself regular analytip.

12, Since any two points of & m@ be joined by a
polygonal path 1t suffices to r%how that f(z) possesses
the same value at the end- pomi;% of any straight seg-
ment s gituated 6, d?}@’sllibtﬁ?ythaz length of s, ¢’ and
{' its endpoints, € > 0, a:n “arbitrarily given number
By hypothesis each pomt 2’ of s possesses a neighbor-
hood such that fog Q}ny point 2’/ of this neighborhood

f(Z”) f&)

.,\ 2 =7

I"'
|

'2_3.

o\
Applyifg the Heine-Borel theorem (KI, 3, p. 9) to the
closedMset s is follows that a finite number of such
nmghborhoods COVers s. Hence we can find a sequence

\of points zo = ', 21,2, " ,2 ={'ons such that
two consecutive points lic in one such neighborhood.
We have then, fory = 1,2, --- , p,

| Je) = o) | <jlz =z

Adding these p inequalities we get
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e — FE) | <.

Since e was arbitrary it follows that f(¢) = f(¢'). (A
shorter but less direct proof follows from theorem T,
K1 20, p: 79.)

13. Set flz) = ¢(x, ¥} + Wlr, ), £ = & + 4n. ¢ and(\

¥ have continuous partial derivatives ﬂtl%fymff Ihe
Cauchy-Riemann equations. We must prove 1hdt N

ol , yo) -+ Dlen, yo) — ¢(xn, ¥) — W(:cﬂ,?.‘yﬂ_)
(l"\:; - x?a) + 3(1)": - I;’n) '."’}\\.

Héﬁ’&i m + i, )

We prove this ior the real pargs, of these expressions.
The real part of the f&&?\@l@ﬁémlbl -ary org.in

NS

HoCen , wi) — ofz. , vﬂ) (*sﬁ — &) b [Pz, )

~ ¥z, yn)](yi“s— v/l — @) 4 il - v’

Applying to the, ex;n essions in the brackets the mean-
value theorem and noting that the partial derivatives
are contm\mm at (£ n), we see that the two terms of
the nu{n@mtm are equal to

{4\%@, n) + o]zl — @) 4 (B 7)

~\

N

and

+ a’](y; - yra)}(x; - :U”)

=& n) + 81 — 2) + [¥.6¢ »)

+ 8l — u) Wl — )
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respectively, o, o, 8, 8 being quantities which ap-
vroach 0 when (e, , w) — (& 9, &), yo) — (& 7).
Since ¢, = ¢, , ¢, = —y¢, the real part of our difference
quotient may be writfen us

o )+ falel — )+ (@ F Bl — =, 2yl — Yol

+ 8 — w) Vel ~ @) + 7@}}?"'}

This fraction — 0 as 2, and 2z, — ¢, for it mag™ l}b vmtten

a3 a sum of three products of two t(‘{ms Bd(’h one

term converging to () and the other femaining <1 in

absolute value. Thus the real paxfyof the difference

quotient — ¢,(&, 4). In a Similar’\\:\my we can show that
‘rho ‘mfigmfuy part — ¥, (& Ph™

Assume The & f‘%‘i&fﬁ%\?ﬁy P8R wrong. Then there

ﬂmst an e > 0 and mw sequences (z,) and (21) in

lz — 1 < o auchthatlzn* 2, - 0 but

(&3 — flz)
\\ oy

260-

Let Z h€'s hmit pomt of (z,). There exists a subsequence
(£ Bi}z ) such that ¢, — Z. The corresponding subse-
EiLI ¢e () of (z,) also converges to 7. We have

FUARS (DTS 1 -
g-ﬂ - g.ﬂ

for all n. By virtue of the result of the preceding

problem, and since f’(2) is agsumed to be continuous,

thc above cxpression converges to | f'(Z) — f'(Z) | =
0. Thus we arrive at a contradiction.

*..:’/,
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§6. Simple Properties of the Elementary Functions
1. For0 < jz| <1

e — 1 [§|z1{1+%+§'—!+---}

O\
wnm<%)
R ‘.
and \:..,g""
) 11 ™

|
www.c;}bi'auh%l ary . glg ml > 7 l Z .

2, We have |¢" —

LR [2] + lel/2t + oo
This series is equal t;f} 1”

— 1, and also to

um+%-u-~kuw+%

N
."\s v
"4

\‘3 a) Consider the funciion f(z) = & ~ (1 + z).
7(0) = 0 and f'i@) = ¢ — 1, Thus f'(x) > O forz >

0, and f'(#) < 0 for x < 0. This shows that f(z) >
0 for z » 0.

b) is equivalent to a) for 1 — 2 > 0. (Take the
reciprocals of both sides and set —z = 2/))

¢) The first inequality is equivalent to a) (and
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holds for all real z), the second to b) (replace = by
—2).

d) is equivalent to ¢).

¢) follows from b) by replacing z by /(1 + ).

f) follows directly from the defining power series,
all terms being positive.

g} Replace in a) and e} z by x/y. L\

N\

N

333 W W
@—a) —[@ -2 =Y
"'\\

z Yz
<1-je-a0-5

x

he* =1 5

& )

4. We can repeat, almost word\py word, the classical

proof. Assume that [»vdbnelgdachongean ¢ > 0. Let
» be a fixed positive integersuch that

P ~ "',;‘p-t-z )
e iyt
&
Forn > 2 we; l{}\re

2 OF 1 _,_)z s
(1+@);f°1+z+21(1 e+

- <

SIS

Noo

O 1
N S,
\:

The coefficients of 2~ are positive numbers not excee'ding
1 and are smaller than the corresponding coefficients
in the series 1 + z + 2%/2! + -« . It follows that

\;f,—;—(1 —;i) g%[l—-(1+%)}2+
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- (-20-3)
-t s

N
4

Since p is fixed the right hand side approaches 0 4
€/2 = ¢/2 when n — 4+ o . It follows that the left-,léétn?_i
side is less than e for n > n, > p. Thus Zfﬂzj"}"ﬁ! =
Im, ... (1 + 2/%)" as asserted. Note that e proved
that the convergence (1 -+ z/n)" — ¢* Jsltiform in
every bounded domain. v

9. Let r be so large that |z, | < r forin = 1,2, --.,
and [ | < 7. For overy given e >\ 0, there exists an
n, such that O .
‘ wiw.db ;){g‘l ll)';‘al’zyprg i 1;
(1 + ST <35
for|z| <randn > ng (This was proved in the answer
to problem 4.) Tn ggjg\tieular, whenever n > n, ,

3

’t _z_!'? * — Ia
oVl + n) e

"\t!

< £
C 2

Since ei..is.\continuous and z, — ¢ we may choose a

m >~ \N}sﬁch that

:,,\’;;' [egn — ef [ <

€
a \%

2
\

whenever n > m. For n > m we have

4 -

‘This proves the assertion.

< &
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6. If e = ¢" (cosy + isiny) = +1,thensiny =
0 so that y = nr and cos y = (—1)". Hence n = 2k,
for otherwise e=*¥ would be negative. Since ¢ = 1 if
and only if @ = 0 the only solutions are z = ke,

1 T =] "

7 2’5_1 Z,E?_i

u=I n! =0 . "’\
Q\.
Py i n—1 N 3
<1 <1 ‘&g N\ S
= Z + - — T \/

n=10 (?’l! (n — ! N
R .
NCWZ 2%
K — D1 T !

I

Y
- Z \Z %fbr Ul(bn)T;_;le{:t T (:,)Z;}

Z (4'1 +.2‘2) 31+Zg.

€
-,|=.—0 \n‘

8. We giv €‘\{RI“\ o brief sketeh of the proof. Consider
first the serics
PN

b 4
\J ' ¥ o_ 4.
\\ Cly) =1 — ‘2—!4- 1 + )
.’\s./ .
u.\ ] /
) Sy =y G5t

\/
for real values of y. C(0) = 1 > 0, 0(2) < 0so that
the equation C'(y) = 0 has ab least one root between

0 and 2, in fact exactly one, since C'y) = —Sy) <
0for 0 « y < 2. Call this root #/2. Next prove by
direct computations (cf, problems 7 and 13) the addi-
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tion-theorems: C{y, 4+ ¥2) = Cly)Cly) — S 1Sy,
S + y) = Sy)C{y) + Sy)C{y). They imply
that C*(y) + S%y) = 1, C(2y) = 2C%(y) — 1; S(Zy) =
28 C(y). Hence Clx) = 1, S{#} = 0, S(21r) = ),
so that Cy 4+ 2m) = C(y), S(y + 2-.-r) S(y). Thus
27 is a (promitive) period of C{y) and S(y). Acecor dmg
to problem 7

A ¢
N

= ¢ = (C(2r) + i8(2m)) = e

z+27d
[

so that 277 18 a period of ¢°. O

9. Set am z = ¢. For —7/2 < ¢ <..?I\[2 Rz) =
z— + o s0 that & — o, smceﬁe] Af 7/2 <
¢ < 3n/2, ¢ — Qsince | " | = & 0. If¢ = 72,
¢’ has no limit since R{e") = coséﬁbscillat-es betweern:
+1 and ~1. www dbr aullbr\m} Org.1i

10. 2 4 ¢ -« for al du’eetlons In order to prove
it apply the following estlmates

|z+e’|_>_[:eft\']-—]zl for~g<¢<%,

.\\s.:
bz 4+ 29> (2] — e | f0r7~r<¢<ﬁ,
o 2 2
\:"\:l.
“';.‘]’\z-i—e’[Z[z]“l for ¢ = 2.
2

" 11. The limits are 0 and « along the branches for
which the z-axis is an asymptote. There are no limits
along the other branches.

12. The limits exist along both branches. "Their
values are  and .
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13. The computation is very similar to the one per-
formed for problem 7.

14. ¢ = ¢ = ¢ (cos y + ¢ sin y) is real if and
only if sin y = 0,i.e. fory = () = kx(k = 0, &1,
+2, +--). € is positive (negative) if & is even .(odd).
sin z = sin (& + 1) = sin x-(e* + ¢ /2 + cos &~
(¢ + ¢ *)/2( is real if and only if either y = O~and
z itsclf real) or cos z = 0, ie. z = (2 + N %/2
(k =0, £1, +£2, --.). Along the straight linés ER(z)
(2 4 1) =/2, sin z has the same sign a8 ( 1*. The
answer to the question concerning cos\¥é'y § obtained at
once by noting that cos z = sin (= D :rr/ 2).

15. Set 2 = z 4 4y and apply f{ie\ziddition theorems.
Thus

3“ wwwzdfnésglf El—ynr 1111)

and since the angle l =\ 57° 17’ 44.8", tables }mld the

result y
\
e{‘ > = 3,992 4 ¢ 6.218.

Similarly, O
\<&
£ ) —1
— ¢

cqﬁi(}yw— 7) = cos 5- ete + #sin 5.
A\ 2 2

A = 0.438 — 4 1.127,
5 -5 5 — -5
sin (1 — 54) = sin 1.2 —;*e_q — i cos 12 26
=~ 62.45 — 7 40.09.

16. Since
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- . 22‘1"31 - 22__21
gin 2, — sin 2z, = 2 ¢c0s 9 sin =

the right hand side vanishes if and only if either
(zo — 2)/2 = kv or (z, + 2)/2 = (2k + 1) «/2
(k = 0, =1, £2, ---), for sin z and eos 2 have no zeros
outside the real axis. Thus sin z, = sin z; if and only"{
if either 2z, = 2z, + 2kw or 2z, = & — 2, + 2k, It follow®y

that all solutions of the equation sin z = ¢ eag)be
obtained from one solution 2, with —7 < E}l(&j} &
"Now ifsinz = (¢° — ¢7')/2 = ¢, ie. ¢ 2T =

2ic, then e'* = ic + (1 — ¢ Set ic -+ M- O ¢y =
Ce'”, € and v being real. Then e* %Ce or iz =
log € + 4y. Thus one solution is g]Vé\Tb y

Z m_d—brw}@g@y,org.m

(One may use any branch'gff"(i — ¢H'?, but once this
value is chosen it should be kept fixed.)
For ¢ = 1000 onc,gets

de 4 (L—"eH"? = 7 (1000 + 999999'%)
so that  »&~

\“,,Y _ '; C = 1000 4+ 999999

2, = 1"25 — §7.601.

Tore = bi, 2, = ¢-2312;for e = 1 — 4,2, == 0.6663 —
7-1.0613.
The proeedure for solving the equation cos 2 = ¢ 18
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quite similar. One solution is given by z, = v — ¢log C
where Ce’” = ¢ + (¢ — 1) Forec = 2, 4 + 34,
5, one gots

T .
5oy 1-1.444, A
. ¢\
z, = 0.650 — 2-2.300, ~;"5> “
2, = 7-2.202. ) AN
O
17. We must have N
D
2 4 .‘2}
(ao—i"a;z-i---)(l +¥,~;&+“')
W, db1 auleral y.org.in
RS
*.~::‘ 2 25
“":"X = ! + i +

LN
g
a3

Multiplication @Ih'l comparison of coefficients leads to
the equatiops &

£
O 1
W/ 55 _ =
ga,zo *E-i-as— G
\\\
Vg =1 b _ 2 ta =0

(
Q”
@ __0 —-——-%—{-ﬂb’-—'—lﬁ
_2”{‘@2'—' 24 9 120

which yield the values @, = 0, @1 = La, =0, 0 =

1/3, 0, = 0, as = 2/15. o 1
18. The relation cos’z + «in®2z = 1 implies only
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that cosz equals to one of the two wvalues of
(1 — sin’)"%
19, Since

— — 1
logzmlog[l—}—{z—l)]:zll 22)

3 S
\'\}‘.
we have 3
|logz | = p+ 5 —l— + o$.292+p3+---
P \s
¥ o,
www.dl:g}@hbrar& orgin = p.

Equality holds only forpi= 0,z = 1.

20. We need a defnain in which am sin z can be
defined as a smg}“e&alued function. We choose the
domain (¢ as th\e\whole plane except the positive real
numbers >4\ and the negative real numbers < --1.
For every(2 ‘of G there exists exactly one value w such
that -7\«/2 < Rw) < x/2 and sin w = z. In this

WRY" ¢ define w = arc sin z. Since sin w =

= ¢ we have
cos\wdw = dz so that
<\ - dw 1

dz ~ cosw

The right hand side is equal to one of the values of
1 1
(1 = sinu)” "~ (1~ D
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But (1 — 2z%'" ceparates in G in two single-valued
branches. Sinee dw/dz is continuous in ¢ and takes on
the value 41 at z = 0 we must choose that branch
of (1 — 2)'* which equalg to +1 at z = 0. Now we
may extend the validity of our formula to points of
the boundary of @, which is to be considered as havmg
two banks (Pmof") : O
21. a) w = arc sin z is a solution of the, eQua,tlon
8in w = z. Henee (cf. problem 16)
e =4z + (1 — &)
N7
w = —1log {iz + (1~A"2)“’3|

b) In the same way we. obfain from tan w = 2,
i‘e_ frOm (e __ —zw)?’(wa\’ﬁ;d Iauhbrjr&()!z& in

\ ; ;
w = A = — 10
&I‘MC\ fm 2 g +

ne
22 4 o io\\ = B;[(n;fﬂzkn} — 6—1}24-211:1'.

X .{..
2\

or

Thus this pé'i;v'ér has only real values, the principal

1 Lrf) o+
Vﬂllle b@lhg é T’w. The power a = eﬁ( oga+2kri is

Smgle\alued’ if and only if b is an integer (_ 0), has
Q"ﬁetel minations if b = p/q, p and g being relatWely

\fﬁ‘lme integers, > 0, is infinitely many-valued other-

wise,
23. In any simaply connected domain not containing

z = () the function 2* separates in infinitely many single-
valued branches, For cach branch

dzﬂ —_ azﬂ@
-4
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provided the same determination ig used on both sides,
Proof: Since 2° = €*'**, dz® = &*"°**-a(l/2).

24. The proofs follow almost immediately from the
definitions (by making use of "™ = ¢™e™) or from

the obvious relations: shz = —¢ sin 42, chz = cos iz.

N

25. Since chz = cosidz, a rotation of the z-plane .

about the origin by —90° takes the curves along wh@hl\'
cos z is real into the curves along which chz is, Fhe
curves along which shz is real are obtaineq.ﬁmﬁ the
curves along which sin z 18 purely imqgig’%\vi? by the
same rotation, since shz = —isindz.

2 N

«a3 i
www.dbraultbrgﬁ%ﬁrg;n
Al e
N
RS

’%

o

\’\\.



CHAPT.ER v
INTEGRAL THEOREMS

§7. Integration in the Complex Domain

l.a) Setz =4t t = —1 --+ 41. Then the integral(\
is given by
given by Oy
+1 i ,\\ o
1= tlar=2i [ tar=i O
-1 o N
N RS
b) z = cos t + 1 8n ¢, t = -—m'/\z\»‘}'(‘ — 3x/2.
Hemnce N
Y,
D
1= [ o=z =3

www.dbl‘aulibgal;y,}org,jn
N/
M R\ N
— t=7 : — -Qﬁ\’
ey I = [2: 2152 = %’*}:xt

2.a) z = cost+,¢'§i‘«ﬁt,t= 0 --- 2r. Hence

\
2?“\. . . .
I = §<eos t(— sin ¢ 4 ¢ cos t) di
L
"\(\.)
xs.) ox

A 1 it ot .
D = |:Zl—cos2t+2 +481n2t] = 7.

0

N 2=y 4 (5 — )Lt =0 1. Hence

1= [ o+ o — 2 = 2 d

where z, = R{(z,), x. = F(22).
79



o .L:\?%wdt L[ dt_ f dt
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e} 2 =2t r{cosiFising),{=0--- 27 Hence

I= [ ot rcos ) e
[

H

Zr
=2 o .
Xofz)ine” + 7 I; cos todz = r°ri A

(according to a)). \\\
3. a) Let the four vertices of the square be,‘zll..}, 25,
23 ¥ Z.i ' i 2,— - Z, | = 20{, ‘i!: ‘75 j. FO!’ m ?é _l;‘“‘s'
te . +u \\\\,
1= (t—w)mdt+] (a+a)®q

+f (t + it)” m,ggn « + ity i-d

&\FW\"’ ]_ﬂul b

Q\«

1 mEiTza \*"}1“23 m+ m+1 i+
= m + 1 {[z 1121 _}_\‘{x"" ]3: + [z ‘]za [ ]z.;

&

= 0. e

&
FOI‘ o= "'1‘(};)
N

Ca O -|- 1t o« §F+ i
&
A - f il
<>‘~~./ e —a¥ + 1

m i [0 i o 4] e
L FET 2-{ arc a.n; = 2r1.

bl 4

b)z=zo+acost+1£ﬁsint,t=0---21r.
Hence
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; P4 ’

I = [ {e cos { + 18 sin )" (—asin { + 18 cos &) di.
© 0

If m is even, separate the integral into f§ and f27,

The substitution { = » -+ ¢ takes the second integral

into — f§. Thus I = 0. For an odd m the computation

1s more complicated. But form = —1 .
\)
7 - j‘“ —asinttifeost O
o acost-t ifsint N

2x H NN
.z 2 sin ¢ cosd )
=~ + ) f o’ cos’t +\§2 sin’f

{

+ fdﬁ”f-dbwmm

4. In both cases sef z == cog { + ¢ sin ¢, 2% =
cos /2 -+ 4 sin /2. In ¢ase a) integrate from 0 to =,
in case b) from 0 to- >v1r This yields

a) I = -21\1\—3'), by I = ~2(1 + 3.
5 I, = f‘fdx—
xr

§ 7
4

smm

Thes %tfegrels cannot be expressed in closed form by
ele@entary functions. The same is true for the fol-

‘towing integrals.
\ ? g ;4

Ig — ?:f* e-—r gin i+4ir ocoe ¢ dt
0

= —f e """ *sin (r cos ) di
L1}
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+ 4 f e ™™ ! cos (r cos 1) di.
i}

e [ [ [ B

o &N\
B
. Bin ¥ \\
+ 7 ~ X,
a a4
5 O
g ™
. ~¢ Bin {+5p aes t al ¥
I-!_:%j. 89 TP dt . \‘)
+x ,f\

+%
— ____?: [ 6-—:: sin ¢+igp coe dt. ) \'

v ¢ &/
<&
r.dbr auhbrﬁ}) OrE. 1;/2
9Ll [T nkar= [+ [
v sz v/

\:g‘

2\ TR )
e —r sim £ dt-
.,\<§\ 2]

Since sin { >>~£/\2 in0 - 7/2 (Proof?),

L %‘?< 2 e—(1/2)rt dt — %(1 _ ev—rr,f-i)

1

S&‘; atI;—%OaS?'*ﬁ}m,
O" b) Sine
Q v ) Bince
I4 + ‘.'I'?: — __,&f [e-—n ein {+ip ooE ¢ 1] d{‘.,
1]

11.1+1r'i1§f p’ dt = pc'w
4]
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(here we used the estimate |e” — 1} < |wle'™! from
§6, problem 2). If p — 0, then I, + w — 0, so that
Iy — —mi

7. The length of the path of integration is <2mr.
Thus, by virtue of Theorem 5 in KI, 11, p. 45,

oA

. |
[ iy de| < 2mME) R
LS | ¢

and the right hand side approaches 0 by hypoig}ie\ééis
{for r — Q). .“j'\:‘.

8. The proof is exactly the same as in pr;ﬂ;)iém 7.

9. If the amplitude of the radius is\&“then z =
te’*, ¢ = 0 -+ 1. Hence \d

X
\\.
3
X

1 $
J = ¢e' [ wgrx&l.dﬁliﬁﬂtifr'%'.}?‘,lgrg.)i]df

Jg R

V”,
O

! N
— el‘a f ejeo‘a:,zx/x'ea{mn alE) d{.-
AN
For cos a > 0, i.@:\f&f’}"—ﬂfQ < a < + x/2, theintegral
converges absolGtely. It also converges for o = +w/2,
since, for instducee,
"\X\ ! 1 T sin T4
A, st = f =

gud{‘{ﬁie last integral is evidently convergent. The in-
ﬁ@m diverges for cos a < 0, i.e. for +7/2 < a <3/2.
To prove this, disregard the factor ¢'“ and consider
the real part of the integral. Setting — cos @ = ¢ > 0,
¢ = (1 — )Y > 0, we get

! 4 e dr
f ecft Cos (Qz—) dt = [ Gcf [0 (CIT) _T'E.
0 i )

Li]
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At any distance from the origin there are intervals of
fixed length 27/3 in which cos (¢'r) > 1/2. This shows
that the last integral cannot converge.

10. The integrals converge if and only if

a) cos 20 > 0, b) cos pa = (.

The proof is similar to the one given for problern 8%,

11. In this case the definition of the integr&l’\cxé"a
limit of a sum is not applicable. The integra‘.}'mﬁy be
defined as follows. Let 2, ,2,, + -+ , 2,, - - - hé@sequence

of points on L different from b and such”t?hat z, — b.
The integrals S

1 f";é
www.ab:;u br?g)g?grg.x

exist for all n. Assume that for every such sequence
(z,) the sequence (I,) ‘GOnverges. 1t is easy to show
(cf. §5, problem 8)"‘{}13,1: I = lim I, is independent of
the choice of t%&‘séquence {z.). In this case we say
that the fmppeper integral fo; f(z) dz exists and has
the value J©
12. The.answer is similar to the one given above.
‘The (ategral exists and has the value I if for every
sequgnice of points z, on L such that z, — o, the
¢ {proper or improper) integrals
S)

&
n

Lm[}@&

converge to I as n — . If convergence takes place

for every such sequence, the number I will be the
same for all sequences.
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§8. Cauchy’s Integral Theorems and Integral Formulas

i. According to Cauchy’s theorem the paths of inte-
gration may be replaced by the circle [z — 2z, | = r.
A simple computation (reproduced in KI, p. 43} shows
that the integral vanishes for m ¢ —1, equals 2qidor
m= —1, o

2. Using the decomposition 1/(1 + 2°) = {42 X
[i/(z — i) — 1/(z + ©)] we obtain withoufany diffi-
culty the answers; O\ R
ay r, b) —m, 8L

3. Choose a point z not on Leabd a positive number
o such that |z, — ¢| > pJfexall points { on L. For
2z, — 2] € p \V@V‘]}aﬁ}lﬁ‘ami?f'&r‘s}.m'g_in

J@) — fz) - 3_' Lfﬁ)__ dt
z — ZQ 21‘-13; :'L';(g' - 20)4

_ 2t Lo { ! (flﬁ”_l_)
= 2?1?." J\‘p({) 7 — zl‘l (g, _ z)a (g. — zu)3

2N/ i 3 }
{ \d - d
\"\\ (f - 30)4
},’D\enote this quantity by D. We must show that D —
L (S0asz—z .St —z=4,2—2=" Then { —

_2 A+ — A 3 }d
D_zﬂ'?: LQS(;){'Q'(A_!_ )’ A° (A‘I“"I)*. d

(BA* + 245+ A + ) — 3A?d;.

2! (BA” 4+ 2An T 7 )\A4.

= T L‘i’(f) (A 1 ‘q)“Aa




Q
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1f we compute the numerator, we see that 7 = & —

z, may be taken out before the integral sign, and we
et

D=z~ z):" f (0 _ﬂQ___ di

where glz, z,,¢) s an integral rational function of ifs \
three arguments. Now let 1f; be an uppey l)oumi f}}L
,qb(g‘ )l on L, M, an upper bound for | g(z, ~‘[,~’f)
forjz — 2! < pand fon L, d a lower bmm({ Tor the
distance bctwaen a point of L, aud a pom{‘z on the
cirele | 2 — 2, | = p, | the length of L. We have
1D|S—+MhMr§Wz"5}L“

where k is a fixed conkt(mt dﬂp ndm% O, o and p}. It
follows that z — 2, im eﬁ iy
4. For v = 1 the a\SGIUOD was proved in the pre-

ceding answer. Ass;aﬁxe it to be true for v — 1. We
must show that \\

Fo V6 — i“”"’(zn)

z 0
;"\
A
S ! ¢@[ L
x“\: i L& — & (g. z)v+2

7
NI S— V) F
(& - 30)”2 {

INCE 2oL gt
@

A1 _ z)' +3

di.
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As in the preceding proof, we show that the difference
of the {wo integrals may be written in the form
~ A v Zml) [ ¢(§) gl»(%ﬂlg o

— 2"~ )
"Thig implies that the absolute value of the differehge
does not exceed | 2 — 2z, i-k; henee it — 0 as 2 —(%".

5. Let 2, be a point of &. We must show hat f(z)
15 regular at z, . We take z, as the centex 0:‘1': a square
@ satisfying the conditions mentioned irf dhie theorem.
Let @ 4 b7 be the loft lower vertex 00, ¢ = £ + iy

an arbitrary point of Q. Set \\

-‘.

P = f & @

where the path L«g,@mmm 2§t ight segment leading
from a -+ bi to ¢ %% and another straight scgment

leading from £ +\bz to £ -+ 9. Then
Py = 1 iy da i [ st + i) dy

B O <
sot 121.5\ .

NN

o
N

ea“_;

aF
oy = 1

NN ;
~ By hypothcesis we also have

o) = [ @

where the path I/ consists of two straight segments,
one leading from a + b7 to @ + 7, the other from @ +
g to £ + 9. Thus-
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] £
FE) = [ g+ i) dy + f e + in) de,

go that

oF
Ol (£).

Set F(£) = U(g, 1) + iV (£, 7). The relation 9F/8¢ A,
—¢ 8F /3y = f(t) shows that U and V possess, eorh
tinuous partial derivatives satisfying the Cfmr*’m-
Riemann differential equations. This meang) (]&I, p.
30) that F() is regular in ¢ and, in partleu\kn at z, -
The same must be true for f({) = F’(g‘{ (KI p. 64).

6. By virtue of Cauchy’s theorem,@ny path leading
from 0 to 1 and not containing the@dints z = =2 may
be replaced by a path consisting ¢ ofthe circle |z —7]| =1
traversed a certain number of times, the circle |z + 7| =1
traversed a certain ﬁ‘ﬁ’iﬁbdé’r s T?h}éso "%nd the straight
segment leading from 0 t0 1. The circles may be tra-
versed either in the, p‘@smwe or in the negative direc-
tions; the resultmg}mtegra,ls will be multiples of = (see
problem 2}. Thé integral along the segment equals »/4.
Thus our infegral may take on any of the values =/4
kx, k =’Q,§E1, +2, .-+, and no other values,

7. Y@Lhave
1) = 5ri fcr(r—z)
\I‘husf(()) = 0. For0 < |2z} < 1 we have

1 1 1 1
f(z)ZE'%'L[f—z‘E]df=o'

f(2) takes on | z{ = 1 the boundary values 0, whereas
to(2) | =

Q"




CHAPTER V
EXPANSION IN SERIES

§9. Series with Variable Terms. Uniform Convergence

1. a) Since | n*| = n**, the series converges for
Rz > 1. The series dlverges for R(z) < 1. Pmof
Assume that R{z) = 1 — §, 8 > 0, and a,pply“jthe
result of §3, problem 13e, to the series = 1/’ and
Z 1/n = T 1/n"-1/n*"*, The general tetm of the
series denoted there by 2 [ b, — b,y | iS'\hi’ our case

L <36 D™

| -
According to §6, problem Sa, we have for z > 0

et DV
& > 14 L. dbiba%glar'y (1,'“ z) <z,

hen\ce log (1 + ) %

so that (ef. §6 problem 2)

(1—z1) log {1+(1/n)] 1 I

1 1\-¢
(1edF -

Noo

O\

't‘:“' Sll;z-ll 'K,

:Ie

N
m\J

N where K = 2''"!, Thus T | b, — busx | converges. It
follows that the convergence of = 1/#" would imply
that of £ 1/n. Our series also diverges for Rz = 1,
but we can not repraduce the proof here.

b) ful2)/" > 1iflz| < 1, fi(e) —» —1if [ 2] >

89
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1. Hence we have convergence for | z| < 1, divergence
for | z| > 1. The series diverges for |z} =

¢) Answer and proof are the same as for b).

d) For |z] £ 1 the series converges. Along the
unit circle there 18 a dense set of points (econsisting of
all roots of unity, z = €™%*") at which infinitely{
many terms are meaningless. At a point z = e’“‘“’,
irrational, the series could converge. (The sare T
mark applies to series ¢) and f).)

e) For |z} < 1, |f.(a) | is asvmptot;ea:lly equal
to | 2°/n?], for | 2] > 1 to 1/x% The sexias converges
forjz} = 1.

) lz) < 1, £.(2) | is asy pfntlcally equal to
| @,2" |. The series converges if #hd only if the power
series » a,2" converges. If | zi > 1, our series con-
verges if and only if Fa & Verges In fact, if {2z{ >
1 the convergence of " E T}ET "Y%% implies that of
> a,/{(1 — 2", and hence that of D_ a./(1 — &%) —
Y a1 — 2 ":‘E a, . On the other hand, if D a,
converges so dogs the series ) a.(1/2)"/(1 — (1/2)")
(for |z} > 1) and the series

" _a.(1/2)”
.i}m -2 a2

\U 1 1 — (1/2 )“

\ It is known that the series converges for a

re‘al z. It diverges for §(2) = 0. In fact, setting z =
\3c + 4y, y # 0, we have

Sinm — é-};: (e‘nx—nu — e—s’n:-i—n.y),

sin'nz i 2 % (en]vl — e-—nlul),I
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s0 that (sin nz)/n dees not approach 0 as n > .

h) The series converges for a real z (since
leos nx | < 1), diverges for S(2) = 0. The proof of
the last statement is similar to the one given above.

i) The sevies converges for z # —1, —2,

In fact, for suchazandn > 2| z| O
(=0 (=D ] 1 1<y
ER e R RPR PR
. N
REZE 2
— nln + 1)
and f.(z) — 0O for a fixed 2. e NG

k) The series converges for} = —1,
In fact,

(=1 (@J&’.‘g“.égj 1) K
I N7 L A ST < .
[(z—i-n) logn (z—%—?’z«—f— Dlogn + 1) | —nlog’n

(K being a ﬁte&\ positive number), the series
2. 1/ (n log*n) c\m"-ferges and f,(z) — 0 for a fixed z.
1) The sexies converges for | 2] < 1, diverges for

fz!>1 qm('é
F1{@) ‘k"’\fé(z) + sk faE)
”\ z i i R
’"\ » 2“"1
lu\;~"’ 1 —_—
2 — zzn—n

- 1 -1 ~2"""

The last expression — 2°/(1 ~ 2%} if | 2| < 1, has no
limit if { 2| > 1.
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m) The series converges to 2/(z> — 1) if |z]| >
1, divergesif | 2| < 1. In fact,

R 1) — 5 = 1) =

The last expression — 0 if { 2| > 1, has no limit {ox S
I z { < 1. ¢\ \

2. Let 5 denote an arbitrary positive numbex- The
series converge uniformly in the follomng “elosed)

domains: w'\\.
a) R(z) = 1 + & \
b),0) 2] <1~ RN

d),e) |zl <1~ 5and[z132 1 -+ 8

fylz]<1—dand|zi> 1+§1f2a converges;
2] € p— 3510 a, dlverges“ end p denotes the radius
of convergence of R a;gﬂ:;ratr’llbfal y-org.in

g) 2k1r+5<$< 2%+ Dr — 8,y = 0;

h) the whole reéal axis;

i), k) any \Igsed domain not containing any of
the points ~1

D [al&
m}pe! > 1 —i— 6.
3 {{é?f@l be a bounded eclosed sub-domain of &,
a q@e situated in ®, containing ®&; in its interior and
hiving no points in common with &, . Let I denote
‘<\ Xhe length of ¢ and d the minimum distance from a
point on ¢ to a point in &, . For z in ®, we have

‘3

740 = 55 [ s ar,

and hence
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l f:;ﬂ(z) + et + f:;+k(z) |

_1_ 1fﬂ+1(§.) + "t + lfnﬂc(r)l
= 2 ), ¢ —2 s ).

Let there be given a ¢ > 0. By hypothesis there exists,
an 7, such that the numerator of the fraction igathe
integral <efortronC,n > noand & > L. Henfe(f'. \

.
770
 { )

|l 4 e L) | < ﬁ—ﬁe

for n > ny , k > 1 and 2 in GpWThis proves the

assertion. N\

4. The proof follows word{feT word the one given
for §3, problem 12. AN

5. Sinece | 8.(2) 5“@\«*1@%3@@,,%5/@ g@ing — 0, 8-y —
0 uniformly in G. Smc{, | eﬂ(z)[h,,“(z) hi2)] ] <
Kla, — @ni1) thems@mes 3 5.(2) [ hani (2 h.ﬂ(z)] con-
verges uniformiy in @.

. We make use of the theorem of problem 4. Set

\’\ fﬂ(z) = (;3_)‘? hﬂ(z) ¢1+:
\.\\w’ 7 n

™

Thc series Z f.(z) converges. Its partial sums must be

\ 'bounded {uniformly in the whole plane since f,(2) is
constant). Set § = 2e If R(z) = p > 0, we have that
P ha(2) | < 1/n°"*, so that {(cf. problem 14) $,-hupy — 0
uniformly. If z also satisfies an inequality fz2] € R,
then
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I S
nete (n + 1)<+z |

T
ﬂJ P/

I+ follows that the series ¥ s,(2){h.(2) — h.s ()] LOn-
verges uniformly. Therefore O

| hale) — hasilz) | =

< 1
= et p

n

S L@k = X ;:2",3 0

N .
converges uniformly for $z) >\0,\ z| < R. This
means that ) (—1)"/n° oonvprges Janiformly for M(z) =
0,lz] <R.

7 T}]e p] OOf 15 Y-}:Eé! gé%ﬁl%};&@}%ﬁne glven above-
Set .“;; N :

1
A w " = —ze’
\\ ¥ {2 t

8. a} Théldisjoint convergence domains, {z| < 1
and | z [¢37], were found in problem le. The proof of
the f{\ébfhat both funetions represented by the series
poggess the natural boundary | z| = 1 requires deeper
theorems.

\w\f b) The series represents the function 1in |z| <
1, the function 0in 2| > 1.
¢) The series represents the function f,(z) in
bzl < Lifele)yinl <zl <14 4.
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§10. Expansion in Power Series

1. Thesc problems are of the following form: the
expansions

w = ‘i‘(z) = Oy + &,;2 + {1222 4 .. A
w = glw) = by -+ by + by® + <+ - ~\.
\

are known, the expansion w = g(¢(z)) = 6y —F ¢z +
e:2° + --- has to be dptermmed This 05\11 be done
either by computing ($(2))" = &, Q(zﬁf* =

and substituting these values in g(u?) or by com-
puting the derivatives 703

&
w = ¢'(w)¢'(2), v = g”(w)z'(tb’(z)f + g'{w)-¢"(2),
’ w}'!f e
WW dbi airhbl ary.org.in
at z = 0. In many spelial cases, however, various sim-

plifications will be\fqund
a) 62”‘1_” = B({&}— = ez-eﬂ.

| \

182, 74
\{\W_1+z+—z+ T
\x,
+501 sl
:"\.“* 120
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L:sm(1+ =)
f—z

z . z
cos ——— + cos [ »osin o -
2 ] — 2

=sinl-¢ - -
o &N\
R (,f_)" L (E) N
CosTT, T 2001 — z A\ - z \{}3
O
& ¥
RO
-1—2_‘2‘“23‘@24 \\:}’—?75-—
= 2 _1 ’tg' 6 - ?
O
N 3
L7 < . 4 s} 2 L.
T (1-—2) %’*(1 =)+
W W dhréiﬂlbral v.org-tn

- /e\ V5,1
”zi”\““ 6° T "’+12(}
\/
Setting sin 1 %;}? cos 1
{t{\"}
t"'} _l )2 (é L )”s
\&J, -cr+'rz+(7 > 2"+ 67 a R

= 4 we have

O
A (1 35 1 11
D 185 3. 0 S TP
QY e 21")"* + (120"’ 6 ")z +
C) 6(8') _ 8'83'8“/2”2'6“/6):’- .

- LT N
—e[1+z+2!+ 1[1+2+8+ ]
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.[1+%+ :I

_ e 50, 85..,13, ”J
—~e[1+z+z +Gz 82+302+

{This result could be obtained faster by direct diffeé=
entiation.) e
d) The successive derivatives of log (1 (g% are

%
%3
z

¢ ) ez . ez _ 823 “\ 5

Lo A4 (e

¢ — 4d" + 67 & - 113’“‘.%\\1'13“ ~d"
(1 +ey D+ ) ’

g0 that

N/

wWww . dbralibyar org.i
log (1 4 ¢°) = logg—l-}% 8n1z92

{The only odd m%er in this expansion is z/2, since
log (1 + e ) \z/2 is an even function.)

2 " 1/2
&) \(gosz)m = [1 — (% — ';:z'i- ):,

f) ea!inzzl_l_zsillz_!_%zzsinzz_i_ P

1+z2+%+“‘-
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2. a) Let log* 2a denote a definite logarithm of 2a.
There exists exactly one function f(z) which is regular
at z = 0, coincides in a ncighborhood of ¢ = 0 with
one of the branches of log o + (a° + 2z")'"%], and is
such that f(0) = log* 2. For this function

N\
£0) = 2 (e 4 Y7 «a

[a+ (CE2 +22)1/2](a2 +22)”2 2 (G + 3‘}{ .«,,'

R
2 2l + (2/ay)” 2\ &

Hence

R i

W, dbrau‘hbr ary.org.in

‘”%G+§+§$3ryzéi%1mln

\'\\J
o ne R K F
NIk — k) m— 1)1/
N

\i:\;‘. 1 1
O\ = S "
O .;n(1+2+ +’n—1)2'

;n\.’v
Q ¢) In a similar way one obtaing

(arc tan z)° = ,;( DA (1+ +“'+2n£1)z%’

and
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d) arctanz - log(l -+ 2°)

(1)"'“( i)mﬁ—l
ZZn—f-I 1+ + SRR o e

e} The simplest way to obtain the expansion Uf
cos’z is as follows:

N
£

N 3

2n &
2 \\271

2eosz =1 +eos2 =1+ i I)",(Z )!/

n=tl

The e*cpansmn of sin’z can be Ubtdméd fiom the

identity sin’z = (1 — cos2z)/2. It 13 bﬁ‘flplel to set
\,

Uj1122 == ]_ —_ [_:[}822 — zi\__ M- 1_22“ z?n

i N (2n)!

)

f) The espansion &
W brm!‘libl “ary .ot

1 e fn

N\ (= ’Qn)?

GOS{\ n=0

/N

¢.Z\J ) )
defines the E@ﬂe\v numbers £, . The identity

U SRR Rl

NS ) |
~:., Ly a4 o) =1
ot s ot
/\ w4
Y shows that E, = 1 whereas the other Euler numbers
(integers) ean be computed from the recursion for-

mulas

o (s (s s (o
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Thus
Eg = —'1, E‘ = 5, Eu = —61, Es = 1385, v
g) The expansion

z 1 _ i{)’ﬁ_ﬂﬁn
1 142/@)+2/@)+ - &oalt

defines the Bernoulls numbers B, which satisty theded
cursion formulas

s/

s, g
(for n > 2), whereas By, = 1. Thus /W

1 1 \;' 1
B]=_§’ BQ‘HE, 0' Bg‘*— §6,-..
h) Since tan z wecﬂil%ﬂ‘ﬁ-'bﬁabm"%“k cot z = 1z +
2¢z/(e** — 1), we can obtain the expansion of tan 2

from g). Since log cas{é — [& tan 2z dz we get

= ‘»" .

2'2:1(2211 _ 1)B
1 <= ko Zn 20
og cosi ? 2 , (—1) on(2n)! z

i) Using g) end the identity e’/(e" + 1) =
(I/z)L%/—Qe * = 1]~ (1/2)[z/(¢" ~ 1}] 4 1 we obtain

; (@ ~ 1B, .
{ \ =1 2"
\w\;“' ¢ + 1 + E n!

— (22" - I)an 2n—1
2 + ; @t ¢

k) Using g), h) and the identity 1/(sin 2) =
cot z + tan (2/2) we obtain
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T = #w—1 2(22'1—1 I)Bgn 2,,
sin z ,;} (=D (2n)! 2

3. a) The series f(2) = 2 .on 1/n° converges uni-
formly in the half-plane Rz} > 1 4 § (5 > 0). The
same 13 true for all series obtained by formal diﬂ‘er<
entiation. Hence

=

i@ = 3 ae — 2, @ = E (logm)"

k=0 ANy

(@y = 7 /6; the other cosfficients can mﬁ{%e expressed

in a slmplcr form).
1) By Weierstrass’ double-»«@uea theorem (K1,

20, p. 83) the identity \‘

Z ba = Z ai

EATS dlﬁ""ﬁl&n "ary. &5 g in
implies that ¢, = 2, By, where d Tuns over all divisors
of k, including l»e&nd k. (Example: as = b - b +
ba + by). In pa\mculal if b, = 1, @, = v(k) = number
of d1v1sors Ozt‘ . Thus

2\7—24—23 + 28 4 3 + 22 + 47
=
O 2 7 2 ]
y:; 2" 42 38 4 -
\ Accordmg to b) E,m dln) /(1 — &%) =
Zk L 32" where @z = 3o &(d). (d] % denotes that d
is & divisor of k) 1t is known that Em o(d) = k.

Hence

> bl) —E— =z 4+ 2+ 3+ - (1—-21'5?

nal 1 —2
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4, Assume that (' encloses infinitely many zeros of
f(z) — a. Then these zeros possess a limit point 2,
which lies either on € or in the domain interior to C.
Since z, is an interior point of &, the identity theorem
for analytie functions (KI, 21) mmplies that f{z) =
contrary to the hypothesis.

5. a) No. The function would have to coincide with
w = 0 (by virtue of the identity theorem for an@iviic
functions, K1, 21) and could not assume the yahﬁ 1.

b) No. The funection would have to cefneide with
w = 0 and could not assume the values ¥/2, 1/4,

¢) No, since the funetion would h&ve to ('onmde
with w = z and would have to dli’fe(from this funetion
atz = 1/3, 1/5,

d) Yes. In fact f(z) l/(ﬁ + 1).

6. Since f{z) = %&%pr%lhlb#ﬂyorgnﬂa =~ 0,
[roe=glye-a .
[ 16 e = fzof(z)dz+ffz)dz—

,,\:\ Gy a+l
\\ c+a+1(z*zo) + o

Thus 2, s a zero of order (a + 1) of Fy(z) and a c-

C pomt of order (« + 1) of #,(z), where ¢ = [ f(2) dz.

7. Because 2/ ig not regular at ¢z = 0. (See the
definition in KJ, 21.)

8. There éxist several theorems yielding lower bounds

of increasing accuracy. A first result may be obtained
as follows,

Hf0) =0, ie.
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f(z) = g,2" + -+ ;a'“ ¢U;a2 1;
then f(z) and the function

[ =a,+ asyz 4+ -

possess the same zeros, except at z = 0. Thus we loge™
no generality in assuming that ¢, = 0. Y

Let p be a number such that 0 < p < r and( &[ the
maximum of | f{z) | on | 2] = p. We shall ahg'n that
f(2) == G for 2

Iz|<]

By Cauchy’s inequality (KIn ’p: 77) la.| < M/p"
Hence we have for all \alues “of 2z satisfying the pre-
ceding condition ..., db« aarhbl ary or

g.in
170 — a0 | < ]Q\J|zl+ __M|:J—':—’+...:l
A\
SO gy LB
\Y p_.[z|

72\
s0 thaty

N el
s"\’.‘; ] &y I + M
.\ — @ M | %o J
\/: i @) a ] < ~ o | o
4 i dy l + M

and
[z} = | aa — (f(2) — a0) |
> ] — [f@&) ~al >0
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Considerably stronger results will be found in the
paper by E. Landau, Uber cine Aufgabe aus der Funk-
tionentheorie, The Tohoku Mathematical Jowrnal, vol.
5, 1914, pp. 97-116.

§11. Behaviour of Power Series on the Circle ofa .

2\
Convergence ~\

1.8) > 2/, b) 2. 2% ¢) 2 2*/n (The 9)@:‘:’6‘})1;'101151.1
point is 2 = 1, see also §4, problem 5.) ;‘f\"'

2. All four series have the radius of\gdnvergence 1.
The series converge at all points ofythe circle of con-

vergence except at a) z = -l l}) and ¢) z = -4,
d)z = +1. Proof Use the resuft of §4 problem &, dftor
setting a) 2’ = 2, b) and ¢)¢ = -~

3. Set ?./2 www dbnau‘hbr ary.org.in

HO \\g a7 kE_O biz — 20)".
By Taylor’s theorem

x\ «
n-+k n
\“ b, = Zﬂ( k )ﬂnwc%-
Assume that 2, = +r ig a regular point of f(z}. Then
the radius of couvergence of Y., b,(z — z,)* exceeds /2,
so that this series converges for z — 2z, = 2z, + @, a

being a sufficiently small positive number. All terms
of the series

Eg bilzo + o) = Ek: [Z ('”‘ j.,; I‘“) awkz’o‘jl(zn + o)

"
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are real and non-negative, so that the terms of the
series may be rearranged without destroying con-
vergence. Arranging the terms in ascending order of
n + k = m, we obtain the scries

> am[ > (;"‘)za““’“(zo + oc)k] = 3 anlr +a)'i

k=10 m={}

Q!

This series, however, cannot converge, smce A+ a lies
outside the circle of convergence of E\Q\Z Thus we
arrive at a contradiction.

4. The proof given in KI (p.,101) for a) can be
adopted to the other cases. Anofher proof uses the re-
sult of the preceding problem\¥t shows that z = 1 is
a singular point of f(z) = P 2"". Let 2, be a ¢g-th root
of unity, z, = €W “hb%hﬁﬂf@z&; -sinf(z/2,) is singular
at z, . So is f(z), for f(.a) Jo(2) is a polynomial. Since
gvery point on thqumt circle is a limit point of roots
of unity, all, lrfbs on the unit circle are singular.
The same arg\fnent holds for b) and ¢), if we restrict
g to the j.\a.lues 2" and ¢,-g2 +-* gn , respectively. To
prove the’ assertion concerning d), differentiate this
sen {$wice. The resulting series is identical with b).

Noté that d) ) converges absolutely at all points of the

,uut circle, )

5. a) Tt will suffice to show that If(z) ] = = as z
approaches any root of unity z, = &% (¢ > 0, p
and ¢ relatively prime) along a radius. (See the proof
in KI, 24, p. 101.) Weset z = pz,,0 < p < 1, and
divide the series in two series, T, and T, , the first
containing those terms for which = is divisible by ¢.
Then
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qu pqv
T, = =
so that _
. . } - P uy g
lim (1 — )T, = lim —— (1 — p)T}
s 11— p R
)
‘};0\\ v
~Lim -y T A
! ]. f
Since, for 0 <y < 1, ":f}\
» w\J/
,;‘l ¢ \¢/
1 -y ) j L

= Z —“HJWWI}OTEH_ = ]Og _—1'—'.

14yt oty I~y
we have (1 — p)Tl\ w asp-— +1.
If n is not dw\x@b’lc by ¢, then there exists a positive
o such that PL — 2" | > o (for 2 = pz;). This follows
from the &t that 2* lies on one of the ¢ — 1 radi
which 1€f3§d”ﬂo the points ¢***"/*, » = 1,2, .-+ , ¢ — 1.
(If %} 2 we may set o = sin (27/¢).) Thus

Y l<1~pJT2|<a~p)Z"=1.
O x
Tt follows that | (1 — p) (T, + To) | = {(1 — p)

[fz} |} > + = as p — +1. Hence every root of unity
is a singular point of f(z), and the unit circle is a natural
boundary.

b} The proof is more complicated. It will be
found in the paper by X. Knopp, Uber Lambertsche
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Rethen, Journal f. d. reine und angew. Math., vol. 142,
1913, p. 291.
6. For { 2| = 1 the absolute value of the nth term
18 1/7, so that the series fails to converge absolutely.
For z = 1 we have the serics

A
r 1,11 1 1 &y
—1—2 3+4+5+ +8 9{;}\‘~
| N
1 1 1

94 TN
24 '\\,}

Terms with the denominators k&« & 4+ 1),

{k 4+ 1) — 1 have the same bxg&n as (—1 (B =1, 2,
). Denote the sum of thm:“@ terms by (—1%g, . It

suffices to show that E { 1)*g. converges (Why?).

The convergencerof:. ﬂhm@émmw dugivever, follows from

the fact that )

0 <y < T\{l—c‘})z _—'i: I.}j_l—>0ask-—>+oo
and AN,
2N/

N L __L_) (v_.;__ﬁ,_
""*%\‘3‘ = (k NS ARy
R\

o _ _1__) DR S I
T+ 27 kT 2°~2 (42" —

1 1
> (& 1)(@; N ;)

1 1
Tkt —2 k+2-1

> 0.
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For z 5= 1, ] z| = 1 we use the result of §3, problem
14, setting a, = (—1)"""'2", b, = 1/n. We have

s = —z2— 22—t (=D
Let p denote the largest integer for which (p + 1)° <
n + 1. Then \

+—.~—

N

41'_-25
1 —z7% 12

2p+1 \\, .
T ),

D

+2p+3 < KME{ < Kn'?

No/

iI"""z
bt Tt

ool <
so that the sequence (s,/n'/ 248 bounded Furthermore
n? p b, = 1/ 1/2 W\\”uodhtﬁl:d b‘i’yolgzl — by) =
> 1/in"?(n + 1)] conwerges. It follows that the series

a,b, converges. :\«g\

7. Let G be a\éii’-"en positive number. There exists
an m such that)b, + b + e 4+ b, > G+ 1. The
polynomial’b§4 byx + -+ 4+ b,2™ exceeds the value
G+1 a@".b "= 1; hence there exists a positive x, < 1
suchtlaatb +b1x-|— o b > Gforax > oam .
It fﬂDUWS that A(z) > @ for T > .

~C 8. Set @nyy + @use + -+ = r, . Using summation

By parts, we have

n+p ntp

T = 2 a2 = 2 (ro_y — )2

Foan+l pan-kl

n+p

= — 3 1 — 2" 4t — Tas? 0

r=n+1
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Tor a given ¢ > 0 we can find an n, such that [ r, | <
e/3forn > ny.Forz=2,0<z<1landn 2 n, we
have

ntl _ atp4l € €
]T|< (x @) 3t <e
which proves the assertion. :\
9. Using the same notations as above, we ha,)re

l
@

r - E LA ’."‘ _E"
|T[S35+3,=Eﬁ.1]z 2 L:%§5+3K
where K is the constant from §1,,,Q.rnblem 13. This in-
equality imphes the assertion. \*
10. Let € > 0 be gzven By ‘virtue of the result of
problem 9 there exists an m such that
WW. dbsawhlm ary.org.in c
7@ | = | G + aesd™ | < 3
<\
for all z withinGhe triangle. After choosing m we may
chooge a & > such that
lsmﬁﬂ Sa | = | lay + a2+ - + a.2")
x'\
) \./ €
O — (ot )| <5

O .
) for |z — t| < 5 Thus we have

[Zan”—z:aﬂl < ¢

provided ¢ lies within the triangle and |z — 1] < &.



CHAPTLR VI

CONFORMAL MAPPING

§12. Linear Functions. Stereographic Projection

1. a) w+ 54/2 = 3(z + 5i/2), b) w + (3, ’5)(1 — &e,)
= (/2 + B/5){(1 — 2], ¢) w — b/(1 — {Q'\‘—
alz — b/(1 — a}]. R

2. w = (1 — {)z — 1. The function is unujud\ de-
termined. It must be of the form w = g %v ) and for
z = 0, 1 it must take on the values — I

3. Proof. A similanty tr: dn-;folmatm\ri 18 dotummod
by the (distinet) images, w, and ’w\z , of two distinet
points, z, and 2, . The condltlon‘a

w = azWW@abtadllwzalg:oggin_i_ b
yvields ~

O
azw.i@i’ bﬂi_ﬂzzl—"uth
zo — &t 2 — &
The tiansgiammtlon w = az + b may be written in
the 101m~
©
N\ W z 1
AN
\ \J ‘ uy 21 1 f: 0.
Ws Zz 1 ]
4, a} Straight line: R(2) = 1,2,
/3] = 4/3,
¢) Cirele: |2 = 1/7,

d) Straight linc: R(22,) = 1,
110

2\
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e) 'This cirele is taken into itself,

£y Circle: @ + Bz + vy + o/(&° + 5. (If o =
0, we have a straight line in the w plane, if @ = 0, a
siralght line in the z plane. In the theory of linear
transformations straight lines are considered to sbe

special cases of cireles.) .
g) Circle: |20z — 1] = 11fra:;£01f'\=0,
the straight line is taken into itself. W

h) Family of circles: | AM(1 + i)z — 1‘|"" 1, A real
and 0. These circles pass through th&?\m 1gin and are
tangent to the straight line y = 2 J\"

i) Family of cireles: | 2/(iga»— 1] = 1, X real
and 40, ~N\

k) Family of all circles through 0 and 1/Z, .

1) Family of ecircleg. Thmugh 1/, . (If 2, = 0, all
str alght lines. ) W dbrauhbl ary.org.in

m) Family of cIrcle% through 1/Z, and 1/Z, .

n) One of L\ﬁe 8 cireular arce friangles formed by
the circles pgssmg through 0 and two of the threc
points lle NL/Z; 3 1/z, .

oyEissoid: 4 (239:1, X(l — 2pa),

p‘}s“Lemms(,ate ( + 0 - (2 — ) =

\q) Cissoid: y(z* + ¢*) — 2" = 0.
O The answerg are similar to the ones given to

S ploblem 4. (The curves obtained in 0}, p), q) have no
O special names.)
6. a) +1, +4, —1, —7 are taken into points on the
equator (of longitudes: 0°, 90°, 180°, 270°). The image
of 2 = 2 + 4y has latitude § = 2 arc tan |z | — /2,
longitude A = am z, (0 < arc tan | 2| < 7/2).
b) Southern hemisphere, equator, northern hemi-
sphere.
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¢} —90° < A < +90° (“right” hemisphere}, A =
+90°, “left” hemisphere.

d) Eastern hemisphere, meridians A = 0%, A =
90°, western hemisphere.

e) Latitude circle.

f) Meridian.

7. a) Diametrically opposite points on a 1%t1tude\
cirele. \.

b) Points with the same latitude and. C}pbOultP
longitudes. ..‘\‘

¢) Points with the same longitudé ard opposite
latitudes., 7\

d) Points situated svmmetriqaﬁjr’ with respect to
the diamecter of the equator ]ommg the points A =
0 and A = 180°.

8. a) A pencil of”‘r:rréfﬁémthﬁ‘ﬂﬂgq{g {he north pole
possessing there a commadn tangent.

b) A reﬂectlonmmth respeet t0 the plane of the
prime meridian, ™

¢) A reflection with respect to the plane of the
meridians AMa3-90°.

d) A\reﬂec‘mon with respeet to the equatorial
plane, ,\\

&) A spherical triangle whose three sides meet at
”jhe north pole.

\J9. a) The ray am z = A, the circle |z| =
tan (8/2 + =/4).

b) The pair of points z, —1/z.

¢) Circles intersecting the unit cirele in two dia-
metrically opposite points,

d) A circular arc triangle, formed of ares of circles
satisfying the condition mentioned in ¢).
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e) Let 4 and B be the points at which the image
k" of & intersects the straight line through the origin
and the center of &’. There exists a uniquely deter-
mined pair of points 2, , 2§ harmonic to 4, B and such
that z, = —1/25 . If 2, lies within ¥, then z, is the
. N
image of M, .

f) The pencil of circles passing through théimage
25 of P and through —1/Z, . (The pencil of stra,ight lines
through the origin if P is the North Pole orithe South
Pole.)

g) The point 2 = tan (8/2¥. ’fzr/é)-(cos Ak
isin )\)

10. a) We use & Cartesian coqramate system (£, 9, ¢)
with origin at the center of*the sphere. Let the f-axis
(n-axis} be parallel to the z-axis (y-axis) in the z-
plane. The 1mag,&mfd6;m1gglg&eyw Jas the coordinates

2 ) Y

T T B T
L

) 1
.Q§ 5‘_2Wf+Jﬁ+H“

\\h) and ¢) oni} at z = 0. In fact

C:Z de® + dn” + d* = [(&y* + Dds” — SxJa’de

+ @® + Dy (a7 + 47+ DY

The right hand side has the form ¢(z, ¥)(dz® + dy*)
onlyif z = y = 0.

1. (w — &)/ (w — &) = alz —~ G/ — 6, 0
0. If one of the fixed points is «, the corresponding
differences are replaced by 1. The transformation is
called elliptic if [ a| = 1, hyperbolic if a is real and
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positive, loxodromic if it is neither elliptic nor hyper-
bolie (hence, a combination of both). (The prool will
be found in €, Chapter 1.)

12. The transformation is uniquely determined and
has the form

W=, Wy W 25 BT A

Wo—w, Wy — Wy 2 — 2 2% — 2 LA™

If one of the given points 1s o, the (‘orre"p)i‘zrlfling

differences are replaced by 1. It js clear thaiEhis map-

ping is a linear transformation sdh%f\mg )our eondi-

tions. That it is the only such hmthqm follows from
the invariance of the cross-rutio (HQL&C §L0-12).

13. 2, is the reficetion of 2, withiwespect to the crcle

k if and only if every circlegkontaining z, and 2, is

orthogonal to k. Thy “,waafj,l}‘m&a@k?gmfmm the fact

that a linear transformafion is conformal and takes

eireles 1nto ecircles. A

14, The tra.nsfnmfa-t.ion must take z = o intow =
—1 (sinee 2 s the reflection of 2z = 0 with respeet
toyz| = 1, %ec pml)lem 13). Thus the points z = 0,

1, = muqt\heidken into w = 1,2, 0, —1 respeciively.
The result’of problem 12 v;tld»; the umquel\ deter-
mined ansformation w = —(z — 1)/(z + 2).
lﬁ w = (e + 8)/(vz + &, o 5, v, 6 1eal, ad —
\'"Béf":> 0. In fact this transformation takes the real axis
into itgelf and z = ¢ into w = (a7 + B\a {(vi + &).
Bince Jilei + 8)/{vi+ 6} = \aﬁ — 8V /(¥ 4 8% > 0,
the transformation maps the upper half-plane onto
itself,
Now every mapping of the upper hall-planc iiself
may be accomplished by a linear tvansformation which
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takes three real points z, , 2, , @3, 2, < 2y < @3, into
0, 1, «, regpectively. If we form such a linear function
{see problem 12), we obtain a transformation of the
form given above,
16. To find the mapping use the result of problem
12, This yields .
(N

w"—0;1~0__z~1_._£—1’\
w —w l-—cn-_z-f-l 'Z'(‘H"I"

orw = —i(z — 1)/ + 1).z2 =10 iggtﬁkerl intow =
i,z = o intow = —i. It follows thapthe straight lines

through the origin are taken int@wircles through ¢ and
—1%, the radii into the ares ‘of\ these circles contained
within the upper half-plané.)” .

17. To find the mapging funetion use the result of
problem 12, T‘h&@*’ﬁi@iﬂﬁihum#.o(g.id— 9 /{z — 7). Thus

= ( is taken intodew = —1, 2z = = into w = +1.
The straight lifes through the origin arc taken into
circles passingvthrough —1 and +1, the rays am 2z =
const., | 2y, = 1 into the arcs of these circles lying
withimgBe right half-plane. The circles |z = 7 > 1
are t&ken into ecireles orthogonal to the circles con-
t'\.{mng +1 and —1 and lying within the right half-

«blane.

18. Let w = I(z) be a lincar mapping of the interior

of the unit circle onto itgelf. Let @, | a| < 1 be the

point which is taken into w = 0. It is easy to verify
that the mapping

; z -
w—il(z)_'l__

takes the unit cirele into itself and z = a into w = 0.

=

2l
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1(z) differs from [,(2) at most by a linear transforma-
tion which leaves the unit circle and the origin fixed.
SQuch 8 transformation leaves the point « fixed (see
problem 13); hence it is a rotation about the origin
(see problem 11). Tt follows that I(z) = ¢'*L,(z), and,
that

N
2 AN
NS *

2 areal, o | <2
2 A\ 2

..,\‘
is the most general mapping of the desired type. It
may be written in the form w = (azx\i— b/ (bz + @),
lal > [8]

19. Every rotation of the sphere is a rotation about
an axis. Let P and P’ be §lig' end-points of the axis.
Their images in the plamgflﬁmalwa,mlﬁég)ir(see problem
gb). These two points #re fixed points of the linear
transformation. The\result of problem 11 shows that
the. transformatr({& i8 of the form

PR RV VA z—1/7
O
It Jdgveasy to see that the transformation must be
eIhptm {see, for instance, the answer to problem 21b).
N\ Settmg | 4] = 1 we obtain after a simple computa-
tion: w = (az + b)/(—bz + @), a = 0, b arbitrary.
20. The transformation is not uniquely determined.
To find the transformation, draw the straight line
joining the two centers. There exists on this linc a
uniguely determined pair of points z, , 2§ such that
4 is the reflection of z, with respect to both circles %,
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and k, . Any linear transformation taking z, into 0 and
z into = {or z, into = and 2} into 0) takes %, and %,
into two concentri¢ circles about the origin.

21.8) 1/(w — &) = 1/ — ) + C, C = 0. If
{o = o, the transformation has the form w = z + Con,
Transformatxons with a single fixed point are called
parabolic. A\

b} A hyperbolic transformation leaves eall cir-
cle through ¢, and ¢, fixed, takes each orthogénal circle
into another such cirele, An elliptic transformation
takes a cirele through §, and ¢, into another such cir-
cle, leaves each orthogonal cirele ﬁxezd The behaviour
of a loxodromic transformation, mn be described by
representing it as an elllptm transformatlon followed
by a hyperbolic one. &

A parabolic tmn&iﬁimam;},ftﬂ.gqgl each cirele through
¢{rinto a circle possessingiat this point the same tangent.
Cireles tangent to ane' distinguished line remain fixed.

All this bec%@s obvious if we consider first the
case {, = 0, {3.= o (or in the parabelic case {; = «)
and note that a linear transformation of both the z
and thesap-planes permits us to put the fixed points
wherefer we please.

22’\Assu1ne first that the transformation possesses
two fixed points ¢, and ¢a. Set a’ = (¢ — ¢1) /(@ — ¢§2).
If | a’ | 0 (hyperbolic or laxodromic transformation),
thenz, — & if [a' | < 1,2z, — Gif [a/| > L If{a' | =
1 (elliptic transformation), then all points 2, lie on a
cirele. The sequence (z,) does not converge. It con-
tains infinitely many distinct points if and only if
(am z,)/2 1s irrational.

If the transformation possesses a single fixed point
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¢, (parabolic case}, then z, — {1, (We have neglectied
the trivial cases 2 = {1, 20 = £2.)

§13. Simple Non-Linear Mapping Probiems

1. Wehave [ &) = | ™1 = ¢ am ¢ = y. ”_L\hQ
image of thP segment v = x, — 7, < y < —L"i‘f.‘l"\"'l'ﬁ(‘
circle j w | = ¢ When y increases from —x (ox(’lnsa\ )
t0 47 (inclusive), the circle is traversed ofige in the
positive direction. When &, Increases fﬂ‘)}n — o {0
+ o, the radiug of the circle increaseg\Nyom — «» {ex-
clu&swe) to + o (exclusive). The 11&1{{\ of the straight
ing —e <2 < 4o,y =y, Agbhe ray am w = ¥y, .
When x increases from — e tc;"il— =, this ray is tra-
versed onee from 0 (exel uane) o w (e\L]ll‘al\’C) When
Yo increases from — #¥00 »?fa,utlf]lea?év % Totated in the
clockwise direction f{{)m the negative real axig (ex-
clusive) to the m%’tﬁ“e real axis (inclusive).

2. We have

%
N\ W

wAG -+ o= sinz = sin (& + )

(N
O\ v )
i e et 2~
AN =sing— + 7 cos g ————
N 2 2
N©Y
BN
\
. . GH e"b‘ . P—?.J
o= BN ¥ —~§~""-'J, P 008 B 2
Let yo be a fixed positive number. f ¥y = y, and

increases from —w {0 <+, then w deseribes an cllipse
with foel at £1. The ellipse 15 described onec in the
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clockwise direction starting at its lowest point. For
y = —y, we obtain the same ellipse described in the
opposite direction starting at its highest point. Through
each point of the planc (excepf- those along the real
segment —1 -+ 41} passes exactly one such ellipse.
If ¥, = 0, we describe the segment —1 -+ 41 twice
{from 0 to —1, to 0, to +1 to 0). In order to obta,m
the complete image of the period strip, we take! two
copies of the w-plane, cut one along the pO‘slthG Iiagi-
nary axis, the other along the negative 1111a,g111ary axis
and both along the real segment —1 -~\ 41, If we
join the banks of the horizontal slifs)rosswise, we
obtain the twe-sheeted Riemann qul‘ﬁlce which is the
one-to-one image of the period strl\)f«
The lines $(z) = const. aré. Jtaken into hyperbolas
orthogonal 1o thc ellipses. o3
3. The best way ¥l ‘\ailsif’é‘f'i‘z%"ﬁﬁﬁ‘mappmg iz to pro-
ceed step-by-step. Sef Dy o=z d2 = 2, € = 2,
(25 — 1)/(za+1}¥z41, — 4z, = tan 2 = w. The
similarity tmn“\@rmdhan from the z-plane 1o the z.-
plane takes gy strip, segments and straight lines into
the strip,, d@gmentb and straight lines of problem 1.
In the”ghnano we obtain the rays through the origin
and the cireles about the origin. The linear transtorma-
tiom, from the zg-plane to the z,-plane yiclds the circles
- through +1 and —1 and the orthogonal circles. The
‘transformation from the z,-plane to the w-plane is a
mere rotation by —90° which takes +1 and —1 mto
—tand .
4. Since sh z = —1 sindz, we obtain all desired in-
forraation from the answer to problem 2.
5. Set 7 = r{cos ¢ + 7 &in ¢), Then
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. 1 1y .
w=u-| w-= r—}-; eos ¢ +- r— 81N ¢.

If | 2] = r > 1is fixed and ¢ increases from 0 to 2=,
w traverses (in the counter-clockwise direction) an
ellipse with foci at +£2 and with semi-axes r £+ 1/r.
If r takes on all values >1, these elhpses fill outl the

region extertor to the seg‘ment -2 . 2 pwept \i}‘n
point w = o, Thig is the image of th(, IE‘}:,ION A <
2] < . O

6. The image of the cirele | 2| = 1/v, 3’\57’ 1, is the
same ellipse which was obtained inle preceding
problem (traversed in the clockwigéndirection). The
image of the region 0 < | 2| < {, 1\1dentlual with that
of the region 1 < [z]| < 4o To obtain the image
of the region 0 < | 2| + w,hke two copies of the w-
plane cut along the s@gﬁ@}ﬁ”“m?v TEH ond join the
banks of the cuts crodswise. The resulling Riemann
surface is doubly-cofihected; the boundary consists of
the points w = oé\i on the two sheets.

7. a) The cloged upper half of the region bounded by
the ellipse with foci at 42 and semi-axis 5/2, 3/2.

b) Fhe closed lower half of the same region.
The mage consists of the domains de=-(311bml
under a) and b) joined along the scgment —2 -
s boundary consists of the elhpse and the upper dml
\ _Jower banks of the slits — 5/2---2,2...5/2

8. If z traverses a ray (am z = consi;.) from 0 to

«w, then w traverses one branch of the hyperbola

) -l v 2o
2 cos ¢ 2 sin ¢ 7 ¢ = amz.

"\
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from e to «. (Note the simple degenerate cases ¢ =
0, /2, m, 37/2.) For 00 < am z < /3, |2} > 1, we
obtain the branch situated in the first quadrant and
traversed starting from the point on the real axis.
These considerations imply the following answers. In
all three cases we deal with the hyperbola with foei 4

2 and semi-axis 1 and 3. ‘O

a) The intersection of the closed region botnded
by the right branch of the hyperhola and th& (@Josed)
first quadrant,

b} The closed region bounded by the 11gh!; branch
of the hyperbola cut along the positivéteal axis from
2 to + . The upper bank of thg(:tﬁ corresponds to
the part of the real axis from 1Mo/, the lower bank
to the segment 0 + -+ 1. "

c) The sam\g\;@gm&gg@.})g@q; along the segment
+2 ... 41,

9. Lblﬂg the answer to problem 6 we see that the
funetion \x\
,\ 2 — (zz _ 4)1;‘2

WS W =
O 2
(obtained! })V solving the equation z = w 4+ 1/w)
mapsy 'Qle exterior of the ellipse onto the region | w{ <
1/78The desired mapping funection is
A

m\J

\% w:g[z-(zz—@m].

The point z = o is taken into w = 0. Is the mapping

conformal at z = »? .
10. The mapping 7, = 2° takes the sector into the

upper half of the unit disc (in the z-plane). The

Q!
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mapping 2z, = {1 4+ 2)/(1 — 2) vields the first
quadrant (in the z,-plane), the mapping 2, = z; , the
upper half-plane (in the z,planc). The upper half-
plane is taken into the unit dize by the transformation
w = (23 — 2)/(z; + 7). The desired mapping function
s ~

(14 2% — (1 — 2 )

W= - N

42+l =2\

7%
< 3

At which boundary points is the mappiQ{{;i"onfm‘ma] ?
Investigate the behaviour of the radinand the cireular

ares | z| = const. under the imelnl(ﬁlidtc transforma-
tion used to obtain the final mnmim‘{z
11. a) The “vertices” of our I(‘gloll are p = 1/2

3% /2 o = 1/2 + 15”‘*2 = 1/p. Th{‘ mapping
2, = {(z — p}/(1 — »p‘s)ﬂﬁ'ﬁeg}dm{l’ﬁeymm' 0 < am z <
27/3. The mapping 2, = (2)"? takes this sector into
the upper half- pla “Y(The sign of the square-root is

determined by t ??mdltmn amz, = (3/2) am 2,). The
upper half- pla,ne 1s faken into the unit disc by the
t-ransfmmdjr,{q;l w = (2, — 9)/(z; + 7). The desired
mapping-fuhction is
G
\§~..: (z B 9)3”
L
"\ w = P
\¥ z—p 3/2
+ 7
1 — pz

by w= {(1 4+ 2% — (1l — 22}/{(1 + 2)* +

(1 — 2)*}. This mapping function may be constructed
in the manner deseribed in the answer to problem 10.
12. The mapping 2z, = 1/(z — 1) yiclds the strip
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—1 < N(z,) £ —1/2, the mapping z2 = 27i(z + 1)
the strip 0 < S‘ﬂzg) < -, the mapping 2, = ¢°* the
upper half-plane $(z,) > 0 (see problem 1), the map-
ping w = (23 — 1)/(2; 4 7) the unit dise. Investigate
the transformations experienced by the circles tangent ,
to the given ones at z = 1 and by their orthogonal
cireles. R '\:.\

13. The mapping 2, = (¢ + 1/2)x¢ yields thel}\mlf—
strip 9iz) <€ 0,0 < Fiz) < 7, the mappingizy= ¢
the upper half of the unit disc in the zikplane, the

mapping z, = (I + 2,)/(1 — z;) (see problem 10) the
first quadrant of the z,-plane, 1h0,1\mpp111g 2, = 23
the upper half-plane J(z,) = U5 $lie mapping w =
(z, — ©}/(24 + 1) the unit d}so he desired mapping
funetion is

(1 -+ {z+”Y)"é}m53UJ‘I’mH -Org. 1€'z+1fznur)

(1 + &f.ei-l/?}i.:) + 1(1 \2+Ig’2jxr)

Investigate the tyaanormatlon expeﬂenccd by the
rays and scgments w ‘hich are orthogonal to the bound-
ary lines ofsfhie half-strip in the 2- plane
14. Tné\equd,tlon of the parabolais i* = 4’ (2 + « %),
At ﬁréa(me cut our region along the axis of the para-
bolay f}orn 0 to + o and denote upper and lower banks
of Sthe cut by s, and s, , respectively. Later we w ill
\Jave to join s, and s, point-by- pomt We denote the
parabola by p, the segment —a* -+ 0 by t. The
mapping z, = 2'/* takes the cut region into the strip
0 < S{&) £ a provided we use an appropriate
branch of the square root. The mapping 2z, = m/o
vields the strip 0 < J(z) < 7 8 ig taken into the
positive real axis, s, into the negative real axis, p
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into the remaining part of the boundary, ¢ into a seg-
ment along the imaginary axis. Sefting z; = ¢, we
obtain the upper half-plane $(z;) 2 0 (see problem 1)}.
s; 1s taken into the real ray 41 -.+ 4+ », s, into the
segment 1 «-- 0, p into the negatlve real axis, ¢ mto
the upper half of the unit circle. We can not apply
directly the transformation (z; — 2)/(z; + ) indrdér
to obtain the unit dise, for this transformatioriwould
separate s, and s,. Instead we map the ufper half-
plane of the 2,-plane onto the upper half- -plae (2 =
0 by the transformation z, = (2, — 1)/‘(z3 + I) 8
and s, are taken into the segments Q- - - -+1, 0 -
—1, p into the remammg part of\the rea.l axis, ¢ mto
the imaginary axis. The mappmg z; = 2, joins s, with
s, and takes p into the uppet and lower banks of the
cut extending a]mg“‘ﬁh‘é %ﬁﬁi@élﬁé&‘lgﬂm from +1 to
®. The mapping 2, ="z, — 1 gives us the entire
plane ecut along the\posmve real axis as an image of
‘the original do&qm The two banks of the cut corre-
spond to the two'branches of the parabola. To scpar atc,
these two b@nks we use the transformation z; = z,"

If an apprépriate branch of the root is used, we ob-
tain ¢5& Upper half-plane J(z;) > 0; its boundary is
theimage of p. (Where are the images of ¢, s; , &%)
Now we may pass to the unit dise by setting w =
& — /(e + -+ 7). Combining these transformations,
we obtain the desired mapping function in the form

w = tanz(—i. z”z).
4o

15. a) If M(z) = 1/2, then z is conjugate to 1 — 2,
so that |log z| = |log (1 — 2)|. This proves the
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“middle part” of our assertion., Next, we consider the
function

log 2
Je) = log (1 — 2)

in the quadrant R(z) > 1/2, S(z) > 0. f(z) is regular
in the interior and on the boundary of this quadrant,
except at z = 1 and z = . On the vertical baundary
| f(z) | = 1. On the horizontal boundary 2z -—.—fx‘> 1/2.
Henee | f(z) | < 1 on this boundary. Ferd/2 < z <
1 this is obvious, for z > 1 this follgws from the in-
equality log’z — log°(x — 1) <% which implies
that O

log & lz A\ log = et
log _(1 — ) w.db Jmnﬁ@rﬁh]p)ﬁ!‘ im
If z Hes within thewelb'sed ‘quadrant and z — +1 or
¢ — 4w, then [ffe) | — 0 and |f(z) | — 1, respec~
tively. Now wédraw a circle of radius p < 1/2 about
41 and a cirdle of radius B > 2 about + 1/2. Let
& denote’thé part of our quadrant enclosed between
the twa @ircles. The boundary of ® consists of an arc
of tho Smaller circle, an arc of the larger circle, and
tywa Straight lines. f(2) is regular in ® and assumes its
~miaximum on the boundary (KI, p. 85). On the vertical
N\ ‘boundary |f(z)| = 1, on the horizontal | f(z) | < 1,
on the arc of the smaller circle the maximum of | f(2) |
will be less than 1 if we choose p sufficiently small.
On the arc of the larger circle this maximum will be
arbitrarily close to 1 if we choose R sufficiently largfa.
It follows that the maximum of |f(2)| in G is‘ arbi-
trarily close to 1. Thus |f(z)| < 1 @, and since f
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is not eonstant | f(2) | < 1. This inequality holds at all
interior points of our quadrant. In a similar way, we
can show that | f(z) | < 1 for N) > 1/2, () < ¢
Setting | f(0) | = 1, we see that | f(z) | < 1 whenever
$(2) > 1/2. Replacing 2 by 1 — z and setting | f(0) |-=4
+ @, we see that | f(z) [ > 1 whenever R(z) <, 1~ XZ.
This completes the proof of a). N

b) follows from a) by replacing 2 bv 1 4% 'L) fol-
lows from ) by replacing z by 1/ (r — z) !

16. Consider the domains \

E 2| <1, |2—N<1

and denote by ¥ the intelcseetlo‘n oi £ with the half-
plane R(z) > 1/2, by B the Jintersection of @ with the
half-plane R(z) < 1/2 aud by & the region defined
by the inequalities ¥t dﬁ"a‘l“bf%‘ymgl“? > 1. Of our
three numbers, the fipst is the smallest in %, the second
in 3B, the thlrd n in}\The proof follows from the result
of problem 15,

Where are o of the numbers equal? Where are all
three equah?e/

The }Q&mdaueb of € and & and the straight line
R(z) % 1/2 divide the plane into 6 regions, In cach of
the,se regions determine the inequalitics satistied by

“\o"hr three numbers,
\ 3
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A very; welcome wddition to books on number theory. . . ." BULLE-
T”I\Nz,’s’{SMERICAN MATHEMATICAL SOQCIETY.

Tratnslated by S. Kravetz. viii + 227pp. 5% x 8.

§259 Paperbound $1.60



VECTOR AND TENSOR ANALYSIS
by A. P, Wills

This is orie of the clearest, most comprehensive expositions of vector
and tensor analysis available in English. Assuming no prior training
in vector or tensor methods, and only o good working knowledge of
caleulys, the author {late Professor of Mathematics at Columbia thi-
versity] develops the elemenis of vecior algebra and ca!culqg,\the
theory of scolar and vector fields and potentiol functions, rrohsfcrma-
tions of volume and surface integrals, linear vector funchons and
dyadics, co-ordinate systems, transformation iheory, non -euclidean
manifolds, and tensor theory. From the elemenmrym}shon of a vector
as o magnitude plus o direction fo such topics gsdyads, absolute dif-
ferentiation, the Lamé operator, the Riemenn-Christoffel and Riccl-
Einstein tensors, and the calculation of th'\"(‘Baussiun curvature of a
surface, every topic is developed fuliy.:” ’

Fure and opplied muihemaficians,,.ﬁﬁyﬂcisfs, engineers, students and
teachers of the physical xdeﬂmﬂs;&ﬁlbﬁﬂ{i;?&igﬁgd an admirably clear
introduction to a subject which-Rtis seen increasing application in such
fields as electrical engineeriny, relativity theory, astrophysics, quontum
mechunics, mechanics of{c@ntinuous media, dynamics, study of magnetic
phenomena, efc. Hz\g\arefutly selected problems at chopter endings
iRustrate and exten“d each cancept and enable the student to develop
tucility in hun@ki:hg' vector and tensor notation.

19 poge h‘ié}}ricol introduction. 44 diagrams. 114 problems. Bibli-
ographysIedex. xxxii - 285pp. 5% x 8.
) 5454 Paperbound $0.00
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INTRODUCTION TO SYMBOLIC LOGIC
by Susanne Langer

This is probably the clearest book ever written on symbolic logic for
the philescpher, generai scienfist and layman. h will be particularly
appreciaied by those who have been rebufied by other introductory
works because of insufficient mathematical training. No special knogh
edge of mathematics is required. Even if you have forgotten mast of
your high schosl algebra, you con learn to use mmhemuhqai 109rc
by following the directions in this book, You start with the‘ simplest
symbols ond conventions and end up with a remquéble grasp of
ihe Boole-Schroeder and Russell-Whitehead system&\

*One of the clearest and simplest introductionsste®a subject which is
very much alive. The style is easy, symbolisn?is introduced gradualiy,
and $the intelligent non-mathematician sh@?é have no difficuliy in
following the argument,” MATHEMATICS~ GAZETTE.

Partial conients, Study of forms. Eﬁsenho'rs of logical structure. Gen-
eralization. Classes. Prmﬂpﬂld}?léﬁé@‘tl}\@‘&;ﬂ%g classes, Universe of
classes. The deductive system ofclasses. The algebra of logic. Abstrac-
tion of interpretation. Cu@u[us of propositions. The assumptions of
PRINCIPIA MATHEMAT@A by Whitehead and Russell. Logistics. Sym-
bolic logic and the log of the syllogism. Proofs of theorems.

Second editiom, {Nﬁ'ﬁ many additions and revisions. New appendix
on fruth- vqlg\tables. 3é8pp. 53 x 8.

Y 5164 Paperbound $1.75



VECTOR AND TENSOR ANALYSIS
by G. E. Hay

First published in 1953, this is a simple clear introduction to clossical
vector and tensor analysis for students of engineering and mathemati-
cal physics. It is unusual for its appreciation of the problems which be-
set the beginning student, and its capabig resclution of these prcblerﬁ}.
Emphasis is upon vectors, with chapters discussing e!ementqry\,\\(éctor
operations, up to moments of vectors, linear vector diﬁergn’t:iﬁl' equa-
tions; applications to plane, solid analyfic and dIFferengro,l geometry;
mechanics, with special reference to motion of « pamr_le and of o
sysiem of partictes; portial differentiation, with ope"babr del and other
operafors; integration, with Green’s theorem, Si’okes s theory, irrota-
tional and solenocidal vectors. Most impog't‘;m}f‘fearures of classical
tensor analysis are also presented, with infbff-ﬁaﬁon on transformation
of coordinates, contravariant and coanant tensars, metric tensors,
conjugate tensors, geodesics, orlerﬂed ‘Cartesian tensors, Christoffel

-symbols, and GPP“‘30ﬁ‘:'ﬂﬁww.db;-am1b1~ary_m-g,1n
Many examples are worked,,in”th'e text, while more than 200 problems

are presented at the ends\bf chapters.
#$
“"Remarkably compré{\énswe, concise, and clear,” INDUSTRIAL LABO-

RATORIES, "A usefu1 addition ta the library on the subject,” ELEC-
TROMNICS. "Consdered as a condensed text in the classical maonner,
the book can\weli be recommended,”’ NATURE (lendon].

66 f'gur\vm + 193pp. 5% x 8.

™

5109 Paperbound $1.75
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ORDINARY DIFFERENTIAL EQUATIONS
by E. L. Ince

The theory of ordinary differential equations in real and compler
domains is here clearly explained and analyzed. The author covern
nof only classical theory, but dlso main developments of more recen
times. Q.

The pure mathematician will find valucble exhaustive sed'@m or
existence and noture of solutions, continuous transformcriﬁh groups
the algebraic theory of linear differential systems, an,d fhe sojutio
of differential equations by ceonteour integration. Thé engmeer am
physicist will be inferested in an especially an~}reatment of th
equaticns of legendre, Bessel, and Mathiey; thafransformations o
Laplace wnd Mellin; the conditions for the sb&c:l?arory character o
solutions of a differential equation; Ihe )‘elahon batween o lineal
differential system and an irtegral equahon the asymptotic develfop-
ment of choracteristic numbers anc{ fnctions; and many other topics.

PARTIAL CONTENTS: ReglBembityEtemantng.imethods of integration.
Existence and nature of solutians. Continuous fransformation-groups.
Linear differential equatighs™— theory of, with constant coefficients,
solutions of, algebraic, tﬁeory of. Sturmian theory, its later develop-
ments. Boundary prbb ems. Complex Domain. Existence theorems.
Equations of first order. Non-linear equations of higher order. Solu-
tions, systems, el@ssifications of linear equations. Oscillation theorems.

“Will be wglgmed by mathemuaticians, engineers, and others,’’ MECH.
ENGINEERTNG “Highly recommended,”” ELECTRONICS [NDUSTRIES.
“Deserves the highest praise,”” BULLETIN, AM. MATH. SOC.
Hlstorlcct'l appendix. Bibliography. Index. 18 figures. viii -+ 358pp.
\53/3 x 8.
.8349 Paperbound $2.45



INVESTIGATIONS ON THE THEORY OF
THE BROWNIAN MOVEMENT

by Albert Einstein

This is the complete text of 5 papers by Dr. Einstein on the Brownian
Movement. {1} Movements of Small Particles Suspended in g $ts-
tionary Liquid Demanded by the Molecular-Kinetic Theory of Heat.
{2) Cn the Theory of the Brownian Movement. (3) A New De'rermma
tion of Molecular Dimensions. {4) Theoretical Observaho*os on the
Brownian Movement. (5) Elementary Theory of the Br@wman Move-

ment. ,\‘
These 5 papers have been translated by A. D Cowper, and edited
and annotated by R. FUrth. 33 pages of nofes dliscuss the history of
investigation into the Browmian Moveme&,sprowde simple elucida-
tions of the text, and analyze the sngmfcance and implications of
these papers. The fifth paper is of grem value as a simple explana-

tion specially written for chemisfs™ and physical chemists.
W W, dbr‘au‘]lbl ary .ol ]
Author, subject indexes. 62 fﬁctnofes mosﬁy bibliographic. Edited,

with notes by R, Flrth. 122gp. 5% x 8. Paperbound $1.25
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INTRODUCTION TO THE THEORY OF GROUPS
OF FINITE ORDER

by R. Carmichael

This handy book explains for you the theory of groups, and examines
fundamental theorems and their opplication. Beginning with discus-
sions of sets, systems, groups, permutations, isomorphism, and simi{an
topics, the author progresses in easy stages through the impertdnt
types of groups. Except for a single chapter when an undgr{taﬁ ing
of theory of matrices is helpful, no knowledge of higher mathematics
is necessary for the reocder 1o follow the author's pre;érﬁ'&t]on. Con-
nections are established by Professor Carmichael bgt'\;éeén the theory
of finite groups and other domains of classicallghd modern mathe-
matics. \~

Partial contents. Introduction. Five fundcmeNGl theorems. Additional
properties of groups in general. Abelian gr‘oups Prime power groups.
Permutation groups. Defining relchon's for abstract groups. Groups
of linear transformations. Galgg.r ltﬁ’ﬁax??ﬁ%ﬂﬁ of isomorphisms of
Abelian groups of order p‘“ angd? %ype {1,1,...., 1] Finite geomeatries.
Collineation groups in thes finite geometries. Algebras of doubly
tronsitive groups of degree\p” and order p¥ (p" — 1]. Tacticat con-

figurations. \\

783 exercises and pfoblems Index, xiv - - 447pop, 53% x 8.
"/

N $300 Paperbound $2.00



NON-EUCLIDEAN GEOMETRY
by Roberto Bonola

This is an excelieni hisforical and mathematical view by a renowned
talian geometer of the geometries that have arisen from o study of
Euclid’s 5th postulate on parallel lines. Students, teachers and math-
ematicians will find here a ready reference source ond guide ¢
field thot hus now become overwhelmingly impertant. '.\:\

NON-EUCLIDEAN GEOMETRY first examines the vurioysl:}:ﬂempfs
to prove Euclid's parailel pestulate — by the Greeks b‘y'}rhe Arabs,
by mathematicians of the Renaissance, Then, rangimg through the
17th, 18th and 19th centuries, it ceonsiders 'rhe{forerunners and
founders of non-Buclidean geometry, such as\‘Saccheri, Lambert,
legendre, W. Bolyai, Gauss, Schweikart, Faltinus, J. Bolyai and
Lobaotschewsky. In a discussion of lafer™ Bevefopmenis, the authaor
treats the work of Riemann, Hefmho.lfz“and Lie; the impossibility of
proving Euclid’s postulate, and similar’ topics. The complete texi of
two of the founding mwmgcugﬁgf”mgrg%p&;ﬁ%i to Bonela's study:
"The Science of Absolute Spale! by John Bolyai ond “Geometrical
Researches on the Theory 0% Paraifels”” by Nicholas Lobatschewsky.

“Firmly recommendec\t’éu’ny scientific reader with some mathematical
inclination*’ JOURNAL OF THE ROYAL NAVAL SCIENTIFIC SERVICE.

"Clussics. on the sub1ecf SCIENTIFIC AMERICAN.

Translation w’T{h additiona! oppendices by H. § Corslow. 256 bib-
lographi foofnofe references. Introduction . by Federigo Enriques.
Index. J’g‘] diagrams. 431pp. 5% x 8.

NS 527 Paperbound $1.95
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THE EVOLUTION OF SCIENTIFIC THOUGHT
FROM NEWTON TO EINSTEIN

by A. d’Abro

This is the best detailed semi-popular uccount of the specicl and
general theories of relativity. It is not o watered-down popularizu\
tion, but o scientifically impeccable account, written, however, m e
lenguage of intelligent laymen, It is both voluable as a brood\sur-
vey for the specialist and as introduction to the layman.

Ny
The first portion describes those parts of classical“.‘n‘{é}themmical
physics which were offected by relativity, cnalyzingmthéée new devel-
opments which demanded a new cosmeology. It deseribes fully Euclid-
ean and Riemannian geometry, space, fimea Bistance, mechanics,

electramagnetism, and the concept of E?h{rl.—— and the evolufion
which each was undergoing. \J

A

The second part analyzes Einstein's_ specm'l theory with all its impli-
cations, the work of Fitz erald *tmd Minkowski, and Whitehead’s
criticism of Einstein; "H4"s} q{eraIXrng\Veyl Eddington are clso
examined in detail. The fingl\part of this work is concerned with the
philosophy of science anid':scienﬁfic method. In more than 100 pages
the author analyzes GN\&ﬁ'ptions logical method, and technigues.

“A mode! of semi» papular exposition,” NEW REPUBLIC, "Here at last
we have o boo‘k\on relativity that is thoroughly good,”” JOURNAL
OF PHILOSQ{’RV “Probably no other book covers so thoroughly and
50 Iucndlyi\s broad range of subjeci matter,” 1515.

Secongh Jenlarged edition. 36 illustrations. 482pp. 5% x 8.
A

PN

\ ) Puperbound $2.00
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BOOKS THAT EXPLAIN SCIENCE .\
N

v

&/
THE NATURE OF L)GHT ANE COLGUR IN THE OPEN MR,.&\ Minnaerf. why is falling snow
somefimes black? What causes mirages, the fata margana, smultiple suns and meen: i the
sky, how are shadews formed? Prof. Minnaert of U. foh Uirecht answers these and similar
questions in opties, light, colour, for non-specialists, Particularly wvaluable to natuse,
scignce studentz, painters, phatographers, “Can b b described in one word—Ifascineting!”
Physics Teday. Translated by H. WWI&H)P&&F,E)K&T@&DE@lﬂlustrations. including 42
photes. xvi 4+ 362pp, 53w % B, oy T196 Faperbound $1.495

THE RESTLESS UNIVERSE, Max Barn. New.‘gnrarged version of this remarkably readable
account By a Nobel faurcate. Moving freln sub-atomic particles to universe, the author
exglains in very simple terms the lafes{ theeries of wave mechanics, Partial coatents: air
ant its relatives, electrons and igfs, “waves and particles, wlectromic structure of the
atom, nuclear physics., Nearly 1000N\ifustrations, inciuding 7 animaied sequences. 325pp,
6z 9. £ ) T412 Paperbuund $2.00

y
MATTER AND LIGHT, THE Nﬁ\\PHYSICS, L. de Broglie. Mon-technical papers by a Mabal
laureate explain electromagmetic’ theory, relativity, malter, fight, radiation, wave mechanics,
nuanium physics, philesoghy pof science. Einstein, Flanck, Bshr, others explained se easily
that ro mathematical tfainifk is needed for all but 2 of the 21 chapters. '‘Eazy simplicity
and lecidity . . . shghd” make ihis source-book of modern physcis available to a wide
public,” Saturday )Q\rj‘e‘w, Unabridged. 300pp. 5% x & T35 Paperbound 3%1.60

THE COMMON SENSE OF THE EXACT SCIENCES, W. . Clifford. Introduction by James New-
man, edfted\b});,}(‘arl Pearson. For 70 years this has been a puide to classical scientific,
mathematical ought. Expiains with wvnuswal clarity basic concepts such as extension of
meaning @f, s¥mbols, characteristics of surface boundaries, properties of plane figures,
vectors, ®Gariesian method of dtetgrmli%bngdpusﬂmn, e(tjc. Longzqgrefacgyby Bgrtrand Russeii.
Biblj, f Clifford, Corrected, iagrams redrawn. pp. & X B
wlillzoe{'aphy ¢ 8 TE1l Paperbound $1.60

\¥

E/EVOLUTIGN OF SCIENTIFIC THOUSHT FROM NEWTON TO EINSTEIN, A. d'Abro. Einstein’s
speciad, general theories of selativity, with historical implications, analyzed in non-technical
terms. Excellent accounts of contributions of Newton, Riemann, Weyl, Planck, Eddington,
Maxwell, Lorantz, ete., are treated in terms of space, time, eguatigns pf electramagnetics,
finiteness of universe, methodology of science. "Has become a standard work,”" Nature. 21
diagrams. 482pp. 5%k x & T2 Papestound $2.00

BRIDGES AND THEIR BUILDERS, D. Steinman, S, R. Watson. Engineers, historians, everyone
ever fascinated by great spans wifl find this an endiess spurce of information and interest
Br. Steinman, recent recipient of Louwis Levy Medal, is one of the greal bridge architects,
engingers of all time. His analysis of great bridges of history is both authoritative and
easity followed, Greek, Roman, medieval, oriental bridges: madern works such as Brooktyn
Bridge, Golden Gate Eridge, etc. described in ferms of histery, constructional principles,
artistry, function. Most comprehensive, accurate semi-popular history of bridges in print in

i i dition. 2 hotographs, 26 line drawings, svii +
Egﬂ:;h,sg;»\; sgreatly revised, enlarged edition. 23 p grap 15 Paoeheing €198
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CONCERNING THE WATURE OF THINGS, 5ir William Bragg. Cheistms

Society oy Mohe! laursate, dealing walh atoms, gases, liguids, and tals
Mo scizntific background is needed to wrdersland thes remarkably clear ot DL
processes and sspects of modern science, “More icleresting than any Londan

Motning Post. 32pp. of photos. 57 fgurcs. i + 232pp. S% x 8. Tad vaucle.rd $1.35

THE RISE OF THE NEW PHYSICS, A. d'Abro. Hali million word ex
"The Decline of Mechaniam,” for readers not wversed o higher
expfanation in everyday language of core of modern mathematicai
poth ciassical, modern wiews, Scentificaily impeceable roversge o
system through theosies of Dirac, Hoiserburg, fermi's statis 0
tign; bread but waified, detailed wiew, with corstant comparizon
views. & must for anyone doing sericus study in the physical scien
Inst. “Extraardinary faculty _ . . to explain deas and theoties . .. i
life,”” bsis. Part i of set: phifosophy of stiepce, from praciice of Newter
Einstein, etc. Modes of thought. experimerl, tausality, ele. Part 1
vocabulary of mathematics, discussiens of {unclions, groups,
Rermawnder treats cancrete, detailed covevage of both olasmigal,
mechanics, Hamiiten's principle, electromagnetic waves, thermody
ment, sgecial relativity, Bohr's atom, de Broghie's wave imechanins
scpres of other important topics. Covers discoveries, theories of
Debye, Euler, Foucault, Galois, Gauss, Hadamard, Kelvin, Kepier
Rayteigh Woiterra, Weyl, more than 180 others. 97 'iI".J:atratuans%.3 .'.".(.

Wi,

unsurpassed for lucid, accwrate, delightfel exposifion. How g3 is
flexible, fluid bodies by rapid motiens; why gyrostat falls, (Jfog Srisses; aatuve,
internzl fluidity on rotating bodiss; elc. Appendixes Jescribpg Navactical Lse af
in ships, compasses, monoraii transportation. B2 figurys. 128}3, B3e % §.
"N Td1& Paperbaind §1.00

S 3

FOUNDATIONS OF FHYSICS, R. B. Lindsay, H. Margehaly” Exceilent brivg
popuiar and technical writings. Discussian of methods 8f physical descriptiz
of theory; vafuabie to physicist with elementary (Lafoulus. Gives mear
mndernhphysics. Ct:]nt}elntts: symbalism, Fathernaﬁcal’equations; space and time;
of mechanics; probabilify; physics, continug. eiBction theory: relativity: 5uantuem mew
causality; etc. “Tharough thd Taléighé‘ﬁa'f?}’dpifﬁrb}gervedly recorMerded,”
Unabridged correcied edifion, 35 ]i!ustrailms.,:i + 537pr. 83k w2 5377 Pazerbours

FADS AND FALLACIES IN THE MAME OF SCIEMCE, Martin Gardner. Formerly criit!
Name of Science.'” the standard agfeunt of various cults, guack sysicms, ce'u
have masqueraded as science: hollgw earth fanatics, orgone sex enzrgy, Sarebos
Farteanizm, ilying saucers, medigai Mallacies lke zone therapy, eiz. New ohs
Murphy, psionics, other receptSmafifestaticas. A fair reasgned appraizal of
whick provides excellenty innecdlation. ““Showld be read by everyore, sci
scientist alike,” R. 7. Blwge, Prof. Emeritus of Physics, Univ. of Tzli: Formazr Pres,
Amer. Fhysicai Se¢. ¢ R N\36Bpp. 534 x 8, T394 Paperbiard $1.50

ON MATHEMATICS AND MATHEMATICIANS, R, E. Moritz. A 10 vear laber of love by dis
diseriminating Prad. Jorite, this collection conveys the full sense of mathira
personalities Qﬁ'Eh}aI mathematicians. Arecdotes,  aphorisms, reminiscences, piilosopi s,
definitions,  spetulations, biegraphical insights, ete. by great mathematicians, writs Des-
cartes, Wit \logke, Kant. Coleridge, Whitehead, etc. Glimpses intn lives of graat n ama-
ticians, fram™Archimedes tp Euler, Gauss., Weierstrass, To mathematizians, a nerh
browsingsbaok. TJCI laymen, exciting revelation of fullness of mathematics. Extensive oross
index, 3¥pp. 53 x 8. T38% Paperbound §1.95

£\
AURIDE TO THE i'TERATURE DF MATHEMATICS AND PHYSICS, M. G. Parke I Owar
enfries under approximately 120 major subject headings, of solected most important
menographs, periedicals, articles in Englisn, plus imporianl works in German,
taliam, Sgpanish, Russian. (many recently available works), Covers svery brenck of
math, related engineering. Includes author, title, edition, publisher, plaze, dale,
of wolumes, number of pages. 40 page introduction on hbasic problems of resedech,
provides useful infermation on organization, use of libraries, peyoholugy of leareing.
Will save you hours of time. 2nd revised edition. Indices of authors, subjects. dbdpp.
536 x &, 5447 Paperbound $2.49

THE STRANGE STORY OF THE GQUANTUM, An Accowit for the General Reader of the Growth
of ideas Underlylng Our Present Atomic Knowledge, B. Woffmann, Presents leoigly, esgerly,
With barest amourt of mathematics, preblems and theories which ied to modern quantam
physics. Begins with fate 1800's when disvrepancies were noticed; with illumimating ana'-
ogies, exampies, goes through concepts of Planck, Einstein, Pauli, Schroedingsr, Dirac.
Sommerfigid, Feynman, et New postscript fhrovgh 1938, “0f the beoks attempling an
accaunt of the histary and centents of modern atomic physics which fave come foo my
attention, this is the best,” H, Margenau, vale U., in amer, J. of Physics. Zrd edition, 32
tables, illustrations. 275pp. 5% % B Tul8 Paperbounc $1,45




DOVER SCIENCE BOOKS

HISTORY OF SCIENCE
AND PHILOSOPHY OF SCIENCE

THE WALUE OF SCLEMCE, Hewri Poincaré. any of mos! mature ideas of -'last
universalist™ for both beginning, advanced wa<kers. Nalure o seientifiz truth, v
crdas is innate in universe or imposed hy man, logital thawgp! ws. intuition irelating i
Woigrsirass, tie, Rismann, eicl, time and space irelativity, asychological *ime, simult 3
ders’s cenzept of darce, walues within discinlines of  Maxwell, Carnot, Mayer, Kewtor,
Lerantz, ats, i — 147pp, 5% % 8, S465% Faperbound %1.25

FHILOSOPHY AMD THE PHYSICISTS, L. & Stebbing. Phiiozophical aspacls of medern sciente,
exarnned in ferms of fvely critical atteck on ideas of jeans, Eddinpton, Tasks bl scientes
ausahity, determinism, probability, relztion of world physics to that ni everyday exceriencey
i i carce of Planck-Bahr concept of discontirupus energy levels, infecehces
y Grawn from Uncestainly Prinziple, implications of “becoming' involved in 2pd& JAw
o' thormodynamics, ether probiems posed by discarding af Leplacean Cetarminism, ABES.
Blg x B Ta8C Paperbound $1.65
THE PRINGIPLES OF SCIENCE, A TREATISE ON LOGIC AND THE SCIENTIFIC METHOD, W. 3,
Jevins, Milestone in development of symbalic logic remains stimulaling coffcibulion to in-
westigalion of inferential validity in scicnces. Treats inductive, deductive Medis, theory of
nombher, orobability, Lmits of sciestific method; significantly advancesd{Bdefe’s logic, con-
tains felailed intreduction to nafure and methods of probab. ity SENpRysics,  astecnomy,
everyday affairs, etc, In introduciion, Ernest MNage! of Coluwmbia W <&8ys “[tevons] continues
be of interest as an attempt to articulate the logic of scientitdNgmguisy.” 15l -+ 786pp.

£, % 5446 Paperbound $2.98

X

A HISTGRY OF ASTROMOMY FROM THALES TO KEPLER, i. L. 'E.Qb‘cyer. Crly work in English
to gfve complete history of cosmological views from _prefis{Sric times iz %epler. Partial
cortonts:  Mear  Eastern  astronsmical  sysiems,  Early N GBeeks, Homuenendric  spheres  of
Euxndus, Epicycles, Ptolemaic system, Medieval cosmglDg®” Cooernicus, Kepler, much more,
UEsoecially wsefel to teachers and studepts of e'hfsior_v of ,science . . . unsurpassed in
its field,™ tsis. Formerly “A Histwrwoidiatadd) WSRITATFE D AE L Thalas to Kepier” Revised
foreword by W. H. Stahl, wil £ 430pp. 545 % &3 872 Pageroound $1.98

L CONCISE HISTORY OF MATHEMATICS, D.(Stkifk. tucid stuedy of development of ideas,
igchnigues, from Rnelent Mear East, Gree:é, lslamic scieace, Middle Ages, Renaissance,
modera times, |mperfant mathematicians “d@scribed in detail, Trealment not anecdotal, but
gnalytical development of ideas. Nopsechnical—no math traina: needed, “Rich o con-
wat, thoughtfel  in interpretations NS, Quarterly  Boghlist. 80 illustrations  including
Greek, Epyptian manuscripts, por*.raN of 31 rathematicians. 2no edilicn, xix + 25%pp.
53 x &, +8 ) 5255 Paperhboand $1.73

THE PHILOSDPRICAL WRITING}\E PEIRCE. edited hy [ustus Bughler. & carefily halanced
cxpositon of Peirce's compdete system, written by Peirce himsell. It covers such matters
as srientific methoed, pyre Phance s, law, symbolic logic, theary of signs, pragmatizm,
expenurent, and aother fpmpcs, “Excellent setection . . . gives mere than adeguate evidence
of the runge and gréateéss,” Personalist, Formerly entitled “The Philosopky of Peirce.”
i+ 363pp. \’“' 1217 Paperbound $1.93

~N S
SGIENCE AW M,E?HU[!, fenri Peincard. Procedure of scientitic discovery, methodelogy, ex-
periment, idBasgerminalion—prosesses hy which discoveries fome inta being, Most signifi-
vant and {Plefesting aspects of developmert. application of ideas. Chaplers cover selectrnln
ot faptssdchance, mathematical reasaring, melhematizs and lggic; Whitehead. Russell.
fiantouhe new mechanics, etc. 288pp. 3% x 8. 5222 Paperbound $1.35

,S'lﬁ?liNeé ANG HYPOTHESIS, Henri Poincaré. Creative psychology in sufence. How such con-
®epts az number, magnitude, space, force, classical mechanios qevelc-_:leﬁ. fiow madern
scientist uses them in his thoughi, Hypothesis in paysics, theories of madern pAysics.
Introduction by Sir James Larmor, “'Few mathematrmanﬁs have hz_aéi_ the Eh:eTadtgelil:f EVTJE;}%H
of Poincaré, and none s hiz superior in the giff of clear ewpesitien” € T - .
d%a % &, . 5221 Paperbound $1.35

ESSAYS IN.EXPERIMENTAL LDEIC, John Dewey, Stimulating series ot essays by one of mest
influential minds in Amarican philesophy presents some of hbis most mature tﬂoqgl;ts an
wide rarge of subjects. Parlial contedts. Relationship betvicon inouivy and expernence,
dependence of knowledge upan thoughts character [logic; judgments of_practice, _daLa, and
maanings; stimul] of thought, etc. viil + £44pp. 53 » & T73 Paperbound $1.95

WHAT [S$ SCIENCE, Norman Campbell. Excellent introduction explaing scientific method, r_nle
of mathematics, types of scientific laws, Confeats: 2 aspects of sCieace, Science and
nature, jJaws of chanpe, discovery of faws, explanatien of iaws, measarement and Aumerical
laws, applications of science. 1%2pp, 5% x E. 543 Paperbound $1.23
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FROM EUCLID TO EDDINGTOMN: A STUDY OF THE CONCEPTIONS {OF THE EXTERMAL WIRLD, Sir
Edrmund Whittaker, Foremost British scientist trages development of theorzs of -
Josophy from western rediscovery of Euciid to Edcington, Einste 2
divisions: Space, Time and Movement: Concepls of Classical Fhysi:

Mechanics: Eddington Universe. Contrasts inadequacy of classiga p
physical world with present day attempts of relativity, non-Euciide:
cupvature, etc, 212pp, 53 x 8. Tl

THE AMALYSES OF MATTER, Bertrand Russell. How oo ouor
physics? This wolume covers such  topics as lozimil  analy:
physics, causality, scientific inferance, physics and perceplion,
tivity, Weyl's theory, tensors, invarianis and their physical inter
yualitative series. "'The most thorough treatment of the suzjeut
lished," The Nation. Intreductien by L. E. Denann. 422pp. 5% X 8.

jub-
nd 51.9

LANGUAGE, TRUTH, AND LRGIC, & Ayer. & clear introduction fo tae Wieara Al
schopls of Llogical Positivism. Specific tesis to evaluate walidity of ideas. @

function of ehilosophy, elimination of metaphysics, nature of anatys s 3y
probabitity, etc. 10th printing. 1 should like to have written it mysef,
160pp. 538 x 8, 113 haperbe

come frem? What role does ihe unconscious play? Are ideas best deveiop
raascning, word reasoning, viswalization? What are the methads used oy
Galton, Riemann? How can these techmiques be applie¢ by othars?

leading mathematicians discusses these ang other guestions. xiii +

GUIDE TO PHILOSOPHY, C. E. M. load. By one of the ablest expagife:
not simply 4 histery or a typological servey, but an examenationy Of cert
terms of answers afforded by the greafest thinkers: Plato, MApis%diie. 220
¥ant, whitehead, Russell, and many others. Especially valughig/to persons no”
sciences; over 100 pages devoted to Jeans, Eddinglgnesaed others, the ph
modern physics, scientific materiatism, pragmatism, Sele JClassified bizlog
538 x 8, £ T50 “ag

SUBSTANCE AND FUNCTION, arnd EE?TE[I} THEGRY *0F RELATIVITY, Ernst Gassirnr. Two
books bound as one. Cassirdy esid PATH I EFITAsEER IR e exact scicnoes that i int
consideration new devefoprients in mathemdbiBs. shows  histosicai  cornections,
contents: Aristotelian logic, Mill’s analysis, \Melmholtz and Kronecker, Russell =3
numbers, Euclidean vs. non-Euclidean geofhedry, Einstein’s relativity. Bibiogranhy. irCex.
axi + 4fdpp. 53p x 8 NS T50 Faperkpung $2.00

FOUNDATIONS OF GEOMETRY, Bertra(: Russell. Mobel laureate anaiyzes basic Zrobleris in
the gverlap area hetween mathematics, and philosophy: the nature of geomelnizal wnow 2ds

the nature of gegmetry, and ghe Sapplications of geometry to space. Uovers hisio of

Euclidean geometry, philaso it interprefations of peometry, especially  Kant, 18
and metrical geomelry. Most ifteresting as the solution offered in 1897 by a wreat
fo a problem still curreng™Hew introduction by Prof, Mareis Klintg, MY, Liniversity.
mirably clear, precise, andwelezantly reasoned analysis,” International Maih. Sews. xii -~
201pp. 5% x &, N/ 5233 Paperbound $1.60

THE NATURE OF.QP_Ij}SIDM THEORY, P. W. Bridgman. How maodern physics loons o a h ghiy
unorthodos ghysicist- a Mobel laureate. Pointing out many absusdities of scier deron-
s’gratm_g inal vaties of wvarious physical theories, weighs and analyzes contributions  of
Einstein, #afw,~ Heisenberg, many ofhers. A non-technical consideration of cotre atien or
sciencegandvreality. xi + 138pp. 5% x 8. 533 Papurbouad $1.25

EXPERIMENT AND THEORY IN PHYS{GS, Max Born. A Nobel laureate exartines the nature
and\yalue of the counterclaims of experiment and theary in physics. Synlhetic versus
ana}yhcai scigntific advances are analyzed in works of Einstein, Bohr, Hejserberg, Planch,
Eddington, Milne, others, by a fellow scientist. 44pp. 535 x 8. 5308 Paperboung BO¢

A& SHORT HISTORY OF ANATOMY AND PHYSIOLOGY FROM THE GREEKS T0 HARYEY, Charles
Singer. Corrected edition of "The Evolution of Anatomny.” GClassic traces anatomy, pays-
inlogy from prescientific times through Greek, Roman periods, dark ages, Renaissance. o
beginning of modern concepts. Centers on individuals, movements, that definitely advarced
anatomical knowledge. Plato, Diocles, Erasistratus, Galen, da Vinci, etc. 3pecial section
on Vesalius. 20 plates. 270 extremely interesting illustrations of ancient, nedieval, Renais-
sance, driental origin, xii + 208pp. 53 x &, T329 Paperbound $1.75

SPACE -TIME-MATTER, Hermann Weyl. “The standard treatise on the general theory af
relativity," {Nature;, by world remowned scientist. Deep, clear discussion of logival coher-
ence aof general theary, introdecing ali needed tools: Mawwell, analytical geometry, non-
Euclidean geometry, tensor calculus, efc. Basis is classical space-time, before absarption
of relativity. Contents: Euclidean spate, mathematical form, metrical continuum, generai
theery, etc. 15 diagrams. wviii + 330pp. 53 x 8. 5257 Paperbound $1.75
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MATVER AMD BMOTION, James Clerk Maxwell. Excellent exposition begins with simple par-
25, proceeds gracdually to physical systems beyond complete analysis: metion, force,
perties of centre of mass of material system: werk, energy, gravitalion, etc. Writlen
aii Kaxwell's original insights and clarity. Notes by E. Larmor. 17 diagrams. 178pp.
x E. $188 Paperbound $1.25

PRINGHPLES OF MECHANICS, Heinrich Hertz. Last wark by the great 19th century physicist
i opaf anly o classic, but of great interest in the logic of science. Creating a new system
af Mechaaics hased uson space, time. and mass, it returns to axiematic analysis, under-
staading 2f e formal or strctural aspects of science, taking inle account legic, abserva-
a priori elemants, Of great historical impertance to Poincarg, Carmap, Einstein, Milne.
A 20 page introduction By R. 5. Cohen, Wesleyan University, analvzes the implications of
Herfes lhought and the logic of science. 13 page introduction by Helmholz. xiii + 274pp.
% B, $316 Clothbound $3.50

£317 Paperbound $I.?6\

FROM MAGIC TO SCIENCE, Charles Singer. A great historian examines aspects of scidhce
from an Emaire through Renaissance, Inciudes aerhaps hest discession of early Aerbais,
trating  physialogical iaterpretation of “The Visiens of Hildegarde of Bingemi/Nlso
ceamnas  Arabian, Galenic influences; Pythagoras' sghere, Paracelsus; reagskeping  of
i co under Laonardo da Yinoi, Vesalius, Lorica of Gildaz the Britor; &fc.) Frequent
cuptations  with translations from  contemporary  manuscrigts.  Unabridged, Scortected  edi-
tion, 158 wnusual illustraticns from Classical, Medieval sourses, xxvii +#363pp. 5% x 8,
T30 Raperbound $2.00

4 RISTORY OF THE CALCULUS, AND TS GONCEPTUAL DEVELOPMENT, &arf“B. Boyer. Provides
layman, mathematicians a detziled histery of the development of\gR® ealculus, from begin-
nirgs in antiguity to final ecfaboration as rmathematical absirachign. Gives a sense of
mathematics not as technaigue, dut a5 habit of mind, in progresshen® of ideas of Zenc, Plato,
Pylnzgrras, Eudoxus, Arabic and Scholastic mathematicians, sMéwtan, Leibniz, Taylor, Des-
cartes, Euier, lagrange, Cantor, Weiersirass, and others, ZThis"first comprehensive, critical
histary of ihe calceius was originally entrtied “'The Copcgpfs of the Cafculus.” Foreword
by R. Csurant, 22 figures. 25 page bibbography. v g~384pp. 536 x 8.

\ 3309 Paperbound $2.00

"

4 DIDERDT PICTORIAL EMCYCLOPEDEA OF TRADES AMD INDUSTRY, Manufacturing and the
Technical Arts in Plates Seiected from “L’Engyflopédie ou Dicfionnaire Rafsonné des
Sciences, ¢es Arts, et des Métiers” of Denis Diderot. Edited with text by C. Gillispie. Firsl
modern selection of plates fraomehigheblindidi BSAr eambysyifirench engravicg. Storehouse
o toechnological information to historiag \o¥earts and scidice, Ower 2,000 jliustrat:ons on
A8% full nage plates, most of them offginal size, show trades. industrics of lascinating
era in such great detail that modern ro@onsbruclions might be made of them, Plales teem
wilh men, women, children perfogfiinz theusands of operations; show sequence, .general
apurations, clossups, details of §nachinery, Ifustrates such imperlant, interesting trades,
indusiries as sowing, harvestits,Sbeekecping, febacco precessing, fishing, arts of war,
mining, smelting, castinge irom,/extracting tnercury, making gunpowder, cannoks, bells,
shoeirg harses, fanning, m{ making, printing, dying, over 45 maqe cateeanies, Protessor
Gitlispie of Princeton supolres full commaniary on all plates, idertifies aperations, tools,
frofesses,  etc, Maierial‘ \is presented in lively, lucid fashicn. Of great interest to all

sludying histery of seiente, technolugy. Heavy library cloth, $2¢pe. 9 x 132,
ZNJ T42i 2 volume szet $18.50

GE MAGMETE, Milliam Gilbert. Classic work on magnetism, founded new science. Gilbert
was first 1o use word “electricity,'” to recognize mass as distinct from weight, to discaver
effect of <hedatSon magnetic bodies; invented an eiactrescops, differentiaied belween static
eloctricity, ane” magnetism, conceived of earth as magnet. This lively work, by first great
experiménts)” scientist, is not only a wvaluabfe historical landmark, Dut a delizhtivlly easy
to fgllawNrecord of a searching. ingenious mind, Translated by P. F. Moltelay, 24 page
biogeagMical memoir, S0 figures. lix + 368pp. 534 x &, 5470 Paperboand $2.00

N\ )
HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive, non-technical history of math
& ™ Engziish. Discusses lives and works of over a thousand majar, minur figures, with ‘mnt-
Abtes giving technical jnformation outside book’s scheme, and indicating disputed matlers.
Wol, 1 & chronglopical examination, from  primitive concepts through Egypt,  Babylonia,
Greece, the Orient, Rome, the Middle Ages, The Renaissance, and to 1900, Yol 1L The
development of ideas in specific fields and problems, up through elemealary Ilc;il_culus,
UMarks am epoch . . . will modify the entire tesching of the histary of science,” George
Sarton. 2 wolemes, total of 510 jllustrations, 1355pp. 53 % & Set boxed in atlractive
container. ! T42%, 430 Papcrbound, the set $5.00

THE PHILOSOPHY OF SPACE AND TIME, M. Reichenbach. An impartant landmark in develop-
ment of empiricist conception of geometry, covering foundatians of geometry, time tht_aar}_',
canseqicnces of Einstein's relativity, including: relafions between theary and nbse;vatlons,—
coordinate  definiticns; relations between topofogical and metrical propertios of space;
psychoiogical problem of visual intuition of nnr]-Eucndear_l structures; many mors topics
important to madern science and philosaphy. Majorrty ef ideas reguire only knowledee of
intermediate math, “Still the best book in the figld,'  Rudoif Carnap. Intreduction by
R. Carnag. 49 figures, wiil + 296pp. 8% x 8. 5443 Paperbound $2.00
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FOUNDATIGNS OF SCIEWCE: THE PHILOSOPHY OF THEOWY ARD EXPERIMENT, K,
A critigue of the mast fundamental concepts of suivnce, carbiceiarnly e
cerfain propositions are accept2d witheul guestion, smareatos

gte, Part | analyres presuppesitions of sciantific thoughts exis
nature of laws, probability, etc; part 2 covers nature of EXper
mathematics, conditions for measuremcn?,
errar, eic. An appendix covers problems
time. A lassic in its field. "A real grasg of w
¥iii 4+ 965pE.  G3h % 8%,

THE STUDY OF THE HiSTORY OF MATHEMATICS and THE STUDY OF THE HI'STURY liF b"'L’NLE,
G. Sarton. Excelient introdwctions, orientaion, lor baginding ar
duty of mathematical historian, inzessani effaris and getius of
plains how today's diszieling diffors feom previcus  methods.
critinal evaluations, best available biogeaphies of modarn mathwe:
pn historical melhods is especially wvaluable, 10 ilustralions. 2
1i3pp. + 76pp. 34 X B

MATHEMATICAL PUZZLES

MATHEMATICAL PUZZLES OF SAM LOYD, selectad and adited by Martin Gardnes™
puszles by greatest American puzzle creator and i from b

aof Puzzles” All ynigue siyle, histarical fiavor of
orpbability, game theory, rpute tracing, fopology, i
metrical disseciion. inclades iamous “14-13" puzz'e wnicl
a Differant Color™ which sold millions of copics. 120 ling
¥ + 167pp, 53 x 8

[\

SYMBOLIC LOGIC and THE GAME OF LOGIC, Lewis Carrglh
wilh maodern symboiic logic, bul is fasteas a coliec t.nn
cnarm  and imagination, using the ayilagism, and a
drawing coaclussons, In The Game ol Lagic' Carro!l
ingival game played wilh 2 giagrams and counters
tricky syllogisms. The fina' section, “H'L or Miss" 153
n the deiigntiul Carrall manaer. Lrnt' this regriat 5d|-mr iIH
cosing up ‘g k1% each, Symbolic i LA T IQQHJ The
2 wvals, bouad a5 one, 53 X WwW. élEraU i Favy. brgi

PILLOW PROBLEMS and A TANGLED TALE, L‘BW,IS' Carroll, OJne of the carest of all ..ar'o.l FA
works, “'Pillaw Prebdlemc :untains 72 ppeinal ratin paczes, all tyoical'y |n-'r:'||.._9 Pa:
larly 4as ing are Carroli's answepsS Mhuch  remain exactly as ol
reflentng his actual mentsl process, Jhevpooblems in 4 Tangad Tale”
originally agoearing as a I"10"‘Th‘)' Iﬁa"suni, sarial, Carroii net croy giv
usos answars gent in by rPad \r)“am,u\:, WIGRE approdachns and o
grades th for insigat. ‘*e%e besks  ware rariles  enil
Problens”™ cosling up Lo "~25 and PR Tangl w210, Pijlu
Intradustion by Lewis Carrglh #% = 109pp. & Tangled Tale: & il'ustra
bound as one. 3% 1 & R4

SpE.
eperbouq’ “ BU

NEW WIRD PLZIZLES L. Kaufman. 100 brand new cashengirg po
binations, never t}Pfé\ nublished. Most are new § iwented Ly
and experts botiS\Sqlares of lettars foliow chess moves te Luild
designs made e \ayhonyms: rnymed crostics: double word squares:

you fill in miss syllables instead of missing letter: mary other
“Excelient’ S Rerreation, 100 puzries. 188 Figlres, wi - 122pp.

S

anmn}nm EXCURSIONS, H. A Werrifl. fun. recrsation,
| sunga. Math expert guudes Fud on hygpaths nf
colespS—divide by irspection, Russian
evan” magic squares; deadic syster

: - (TR n,\ct.,
dezens more. Solutions to more difficul? ones. CBrain sthiring stufl .
5S¢ ilustrations, 145pp. 5% % 8,

THE BOOK DF MODERN PWZZLES, G. L. Kaofman. Qver 150 jazzles, 3h'rlull"",- a'
rial based or same apneal as Crosswords, deduc inn puzzing, bol h ) :
techniques. 2-minute feasers. word lahyrinths, design, pattzrn, logic, chsesvation

puzzles testing ability io anpmy general kmwlbdge ta pecdliar si*vations, marx ofnars.
Sojutipns. 136 illustraticns. 182pp. 53% % &, 743 Paperoourd $1.00

MATHEMAGIC, MAGIC PUZZLES, AND GAMES WITH NWUMBERS, R. V. Heath, Quer B0 pueiles,
stunts, on preperties of nembers. Easy Yechrigues ~“or muliliplying lirge numbers  menial

identifying Lnknown autibers, finding date of any day in any year, Includes The bost D1"|1
3 Acrobats, Psychic Bridge, magic scuares, iriangles, rubes, ofhzrs not easily found ese-
wherg, Edifed by 1. 5. Meyer. 76 Mustrations. t28pp. 5% % 8. TL10 Paperhound $1.00
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FUZZILE QUIZ AND STUNT FUN, ). Meyer. 238 high-priority puzzies, stunts, tricks—math
furz'es like The Ciever Carpenter, Atem Bomb, Please Help Alice: mysteries, deductions
liva The Brigge of Sighs, Secret Code: observation puzzlers Iike The American Flag, Playing
Carde, Tetzphone Dial; over 200 others with magic sguares, targue twisters, puns, ana-
Zolutions. Revised, enlarged edition of *'Fun-Te-Do.' Over I0G illusirations, 248
piezzles, stunts, t-icks. 256pp, 53m x &, T337 Paperbound §1.00

M PUIZLES IN THOUGHT AMD LOGIC, C. R. Wylie, Jr. For readers who enjoy challenge,
timwation of logical puzzles without specialized math or scientific knawledgr, Probiems
I¥ mEw. range from o relatively easy to brainteasers for heurs of subtle entertainment.
zclive puzzles, find the lying fisherman, how a blind man identifies color by logic, many
meve,  Easy-lc-undarstand inlroduction 1o logic of puzzle solving and general  scientific
metiod, 1Z8pp. 53 % B T367 Paperbound $1.00

GRYPTANALYSIS, H, F. Gaines. Standard elementary, intermediate text for serious studefits,
Aot osest old material, but much net generaily kaown, except 1o experts, ConcealwBgt,
Transpesition, Sukstitution ciphers; Vigeaere, Kasiski, Playfair, multafid, dozems of otrer
teciniques. Formerly ‘‘Elementary  Cryptanaiysis,” Appendix with seguence chargs, SJ&tter
frequpriies in English, 5 ather languages, Enghish word frequencies. Biblicgaphys 167
zoces. Mew fo this edition: selutions to codes. vi + 230np. 536 x &34, "

T97 Papecheund $1.45

CRYPTOGRAPY, L. D, Smih. Excellent elemeniary intreduction to enciplge’r‘if}g. deciphering
B writing.  Explains  transposition, substitution ciphers: codes; selutions, ceometrical
catter1s, route transcriptiva, cowumnar transposition, other metheds, ,MixBe cipher systems:

sing:#, colyalphapetical substitutigns: mechanical devices; Vigenere e, Enciphering Jap-
anese; explanation of Baconian biliteral cipher; frequency tables™ Ower L5 problems. Bib-
dngrachy. Index. 164pp. 53& x 8. 1247 Paperbound $1.05

MATHEMATICS, MAGIC AND MYSTERY, M. Gardner, Cara jfoisksy metai mathemalics, stage
ind-reating, other “magic' cxplained as apglications aff frebakility, sets, numbzr lheary,
realive eramination of laws, applications, Scores ey trichs, insights. 113 sections

ares, dice. coins; vanishing tricks, many otherdhMaSsieight of hand—malk guarantees

L “Could hardly gat more entertainmenl . . NBasgy to lollow,’ Mathematics Teacher,

iZ ijustrations. xii + i74pp. BE x 8, \J 1333 Paperbound 51.04

AMUSEMENTS N MATHEMATICS, H. E. Dudeney."furcmosi Brilish ariginator ot math puzzles,
slways witly, intriguing, paradoxical (o, 3his 'cla sic, One of largest colleclions. Mere than
320 puzzles, preblems,  paradefed W Ly hh-E@,l Wor@EIErEY on number  manipulations,

Jnicarsal, other route  proslems, puzzlgs\ Om measuring, weighing, ;}aching:q afe, kinshiz,
chessboards, joiners’. crossing river, wlane figure dissection, many others. 3olutions. More
than 450 illustrations. vili + 258ppe 536 » 8. T473 Paperbound $1.2%

THE CANTERBURY PHIZZLES H. E4Dideney. Chaucer's pilgrims set one another problems in
stary fornz. Alsa Advestures of $he Purele Club, lhe Strange Escape of the King's Jester,
the Wonks of Riddlewelig fhésSuuire's Christmas Puzzle Party, others. Al pusiles are
arigi hased on dissect}\% lane figures, arithmatic, algebra, elzmeniary calculus, eth_er
of mathematise. and purely logical ingeruity. “The limit of ingenuity and in-
' The Ohserverd Over 110 puggles. full selutions. 1%0 illustrations, wiii 4+ 229 op.

> Naa T474 Paperbound 51.25

A\ X B
WATHEMATICAL PUZ2LES FOR BEGINNERS AND ENTHUSTASTS, G. Mott-Smith. 188 purrles o
test mental awify™Inference, inlerprotalion, #lgebra, dissection of plane figuses, geometry,
prazarties gheoiymbers, decmation, permutations, probability, aft are in tkese dehghtful
prablems.NIfcludes the Odic Force, How to Draw an Ellipse, Spider's fousin, mere than 180
iers, Oetall®d sofuticns. Appendix with square reots, triaagular numbcrs, primes, clc,
ustrations. 2rd revised edition. 248pp. 9% x B T19% Paperbound $1.00

MATHEMATICAL RECREATIONS, M. Kraitchik. Some 250 puceles, problems, demanstrations of
refrRaticn mathematics on relatively advanced lewel, Unusual histarical pru_l_JIc—ms trom
“Greek, Medieval, Asabic, Hincu seurces; modern problems an malhematics wuthnut_num-
B8rs." geometry, topolegy, arithmetic, etc. Pastimes derived fram  figurative, Mersenne,
Fermat numbers: fairy chess; latrencles: reversi; efc. Full selutions. Exgellent insights
into speciat fields of math. “Strengly recommended to all whe are interested in the

i 3] ics,” Me atical Gaz, 181 illustrations. 330pp. 5% x &
lighter side of mathematics,” Mathemati R ot hound $1.75

FICTION

; i ficti i ife in & 2-
FLATLAMD, E. A. Ahbott. A perennially popular science-fiction classic about |i
dimensional world, and the impingement of higher dimensions. Palitical, satiric, humoro_us,
moral overtones. This land where women are straight lines and the lowest and most dan-
gerous classes are isosceles trigngles with 3¢ vertices conveys briltiantly 2 feeling for

epls i . ition. Mew introductian by 8anesh Hoffmann, 128pp.
gﬂ&fiaﬂj’xcgnr,epis of modern science. 7th editi o 54 60
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SEVEN SCIEMGCE FICTION MOVELS OF H. G. WELLS. Comglete tests. unabridged
Walls' preatest novels: The War of the Worlds, The lovimble Man, The isand .
The Food of the Gods, First Men in the Maon, In the Days of the Comet, The
Stili considered by many experts £ be the best science-fiction evar wiritlen. th
ginysements and instruction to the scientific minded reader. The ereat rmasts
Tetescope, 1051pp. 5% % 8. T264 Cloirbul

28 SCIENCE FICTION STORIES OF H. 6. WELLS. Unzhridged! This ensrmous
2 full lepgth novels—Men Like Gods, Siar Bepotten—plus 26 short storie
invention, DLiclegy, etc, The Crystal Egg, The Country of the Blind, En
The Man Whe Could Work Miracles, Aepyorrs Isiand, & Story of the Days
2Q nthers 4 master . . . not surpassed by .. . writers of today,”’
9i5pp. 63 x 8.

FIVE ADVENTURE MOYELS OF H. RIDER HAGGARD. All the mystery and advonture
Africa captured accurately by a man who lived among Zulus for vesr
ethnology, follkways as did few of his contemnoravios. They have bic
of the very hest high adventure by such critics as Orwell, Andre
She, King Soiomon's Mines, Allan Quatarmain, Alian's Wife, Ma :
a varn sa full of suspense and coler that you couldn't put the sto
82Ipp. 5% x 8

CHESS AND CHECKERS NS

LEARN CHEES FROM THE MMASTERS, Fred Reinfeid. Ezsiest. 5% iastructive
prove your game-—play 10 games against such masters as MEpsHEl, Znosks Baro
stein, Najdorf, etc., with each move graded by easy sysiedl. {pcludes ralnes fo
moves possible. Games selected for interest, clarityqeeasily  isolateg or
Ruy Llopez, Dutch Defense, Vienna Game openings; subbleh intricate middle
all-important end game. Full annotations. Formerly C@hesy by Yourseli” 90 diegra:
-+ 1d44pp, 53w x 8. g ™ T362 Paperbouid £1.99

}F!FI#FEEFD ON ;HEMENDh Gﬁ%E IN CHESS, Frel!tgﬁl‘lfefﬂ. Analyees 52 end gomus by
ahr, Tarrasch, Morphy, Capahiagead hirsiditide iy sesg Hbshevsay, L
1st rate book with extenszive Rgoveraé%bof err«?}f~-?el exacily what is .
you might have made, Centers around tgaRsitions from middle play *
pawin, minar pieces, gueen endings; blockdge, weak, passed pawns, B
boon,”” Chess Life. Formerly '"“Practicaf\End Play.” 62 figures. vi + 177¢p. 5% x £,

N\ T417 Papgrboung $1.25
HYPERMODERN CHESS as developed din the games of its preatest exponent, ARON HNIMZD-
VICH, ediled by Fred Rein‘.‘el.&mar\"mtensely originai player, snayst, Nimsovich's apsrcacpos
startled, offen angered the ohess world. This valume, desigaed for tho av e
shows Row his iconeclashta, methods wen himy victaries over Aleshine.,  La: /
Ruhinstein, Spielmann, offec® #nd infused new life info the game, Use &
startle opponents, inwigofate play. “Angotaiions and introduclicns tc each gamce . . . 278
exceliant,” Times Lonugnt. 180 diagrams. vid 4 220pp. 5% 2 2, T4 Pazarbound $1.35

THE ABVENTURE ﬁF\(‘.HESS, Edward Lasker, Lively reader, by one of Amarcg's firosi
masters, includig® history of chess, from ancient Indian &-hanced gams of Chaturanze
1o great plavers of loday; such deligh’s and pduities as Waelzel's chess-playirg eutermeton
that beat Mamgheen 3 times: eto. dne of most valuvable features 15 author oRE TRUTIED-

lions of \Mgn he has played against—Nimzavicn, Eranuel Lashar. Gapshlanca a".'hc_'k_hir;e,
cte, Diftwgsion of chess-playing machines wnewly revised), 5 sage chess crimer. 11 jiius-
lratigms 853 diagrams, 296pp. 53% x 8, 5510 Fapechoard $T.4%

N
€JHE) ART OF CHESS, lames Mason. Unabridged reprinting of latest revized edilion of most
faptous genesal study over written. Mason, early 20th century master, teackes heginning,
intermediate player cver 50 openings: middie game, ead game, to see more moves anead,
to plan purposefully, attack, sacrifice, defend, euchange, povern genmeral strategy. Classic
. ofe of the clearest and best developed studics,” Publishcors Weekly. Alsg included, a
rampiete supplement &y F. Reinfeld, "How Do You Play Cress?™', invajuatile to baginnes
for its lively question-and-answer method. 448 diagrams. 1947 Reinteld-Bzrnstein  texi
Biokiography. wvi + 340pp. 536 x & T453 Paparbound $1.85

MORPHY'S GAMES OF CHESS, edited by P. W. Sergeant. Put boldness into your gama by
fiowing brithan!, farcefus meoves of *he erestest cress plaver of all Yime. 300 oF Morphy's
hest games. carevully annotated to reveal grinciples. 54 «l auainst mastors ke
Anderssen, Harrwitz, Wird, Paulsen, and others. 52 games at odds; 54 bijndfold gamus: plus
over 100 others. Foilow his interpretation nf Duizh Uefonze, Ewans Gambil, Giueou Piano,
Ruy Lopez, many more. Unabridged reissue of laiest rewised edition. “ew inlroduction by
F. Reinfeld, Annotations, introductien by Sergeant. 23% diagrams. x 3 36Zop. 5% x 2.

T3RA Paperbound $:.75

o
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Wil AT LHECKERS, M. Hopper. (Formerly "Checkers.'") Former World's Unrestricted Chechker

ol discasses princigles of game, expert's shots, traps, croblems for beginner, stand-
lovating best move, end game, opening “'biitzkrieg™ moves to draw when
. Dwer 10 detailed guestiors, answers anficipate problems. Appendix. 74 prob-
aik seletions, diagrams. 79 figures, xi + 107pp, 3% x §. 7363 Papsrbound $1.00

ard

e

i FORCE CHECKMATE, Fred Reinfeld. |l ycu have trouble finishing off your oppanent,
celleclhon of lightning strokes and combinations from acival tournament play.
wve checkmates, werks up 1o 3-move mates. Deveiops agility to leck ahead,
5 inte comdinations, comples or deceptive posiliens; ways to estimate weak-
Gof you and your spponeat, A epod deal of amusement and nslruchon
a0d dizgrams. Salutions to o all positions. Formerly “Challenge o Chess
illpz. BYp ox & 7417 Paperbound $1.25

Y JF GHESS LORE, edited hy Fred Reinfeld. Delightful colfection of anecdotesy
ios, apharisms by, about masters; poems, accounts of games, tournaments, phoff.
*reds af humoraus, pithy, satirical, wise, historical episodes, comments, wohd
nating “'must'’' fpr chess plavers; revealing and perhaps seductive fofhose
what their friends see in game. 49 photographs (14 full page plagesi\12
+ 30Gpp. 523 x & T45E Paperbpund, $#75

Y CHES%, Fred Reinfeld. 200 practical chess situations, o sharpen your aye Mest skill
siers. Start with simgle examples, progress at own pace to complexities. This
series of crucial mamsents in chess will stimulate imagination . Jdevelgp stronger,
rsafils game. Simp'e grading system enables you te jubge progréssy Exlenzive use
15 is a great attraction,” Chess, 300 diazrams, Metes, solutions % every situation.
“iChess Gz wi + 120pp. 53& x 8. {T45% Paperbound $1.00

MATHEMATICS: N\
TLEMENTARY TO INTERMEDRBATE
HOW To CALCULATE GUICKLY, H. Stickpr. Tri ’ﬁ’anﬁ trua method to Fuely reathematics of
waryiay life. Awakens "'numbeW%‘»&é—’F léﬁﬂiﬁbl‘@lkyem@iimships Setiween numbers as
ciz guantities. A serious sourse of gyer v900C problems and their solulions  through

rigues nct taught in schpols: lefttex’®ht multiplizatons, asw fast division. stc. 10
rulcs a day will douh'e ¢r tripie ygalculation specd. Excelient faor scientist at home in

L1 alh Lot isdi i 4 and accuracy in lower math. 28Gpp. 3 o T,

her malh, bul dissatistied \*\Ith'spct.ﬁ a y T odomuna 51,00
FAMOUS PROBLEMS OF ELEM ~Aﬁ‘{ GEDMETRY, Felix Klein, Expanded version of 1894
Eastar lectures at Gitiingen. robiems of classical geomatry: syuaring the circle, trisect-
ing angia, doubling cubew, considered with full modern mplications: iranscendental num-
hors, pi. etc. A moderf Ghassic . . . no knowledge of higher matheratics is requirad,
Seicntia. Motes by R, #Tef®ald. 16 figures. xi + 9Zpp. 5% x 8. T298 Papcrbound $1.00

AKX

HIGHER MATHEMATICS  FOR STUDENTS OF CHEMISTRY AND PHYSICS, 1. W. Mellor, Fractical,
not apstract, puilding proslems out of famitiar laberatory material. Govers drfferential cal-
s, cocré{g&te} analytical geometry, functiors, inlegral calculus, infiniic series, numeruca!
egbstions, a{ Srential equations, Fourier's theorem: probahility, theory aof errors, calculus
of variatippsy determinants. "If the reader js not familiar with this book, it will repay

him toe ire it," Chem. Engireering Mews. 200 problems, 189 figures. xxi + 6d1pp.
53:-2 ’Eae.;(e'lmur‘e t," Chem. and Ene 8 5193 Paperbound $2.35

p TRIGONOMETRY REFRESHER FOR TECHNICAL MEN, A. A. Klaf. 913 dgtai!ed questions, answers
cover most important aspects of plane, spherical trigonometry—particularly useful in clearing
Up’ difficulties in special areas. Part iz plane trig, angies, quadrants, functions. graphical repre-
zentation, interpolation, eguations, logs, solution of triangte, use of slide rule, etc. Mext
158 pages discuss applications fo navigation, surveying, clasticity, architecture, ather
special frelds. Part 3: spnerical irig, applications to  terrestriai, gstronomical problems.
Methotds of time-saving, simplification of principal angles, make book mest useful. 913
guestions answered, 1738 probiems, answers to odd numbers. 484 figures, 24 pages of fors
mulas, functions, x + B29%&. 53 x & T371 Pasperbound $2.00

CALCULUS REFRESHER FOR TECHMIGAL MEN, A. A, Klaf. 750 guestipns examing most im-
portant aspects of integrai, differential calculus. Part 1 simple differeniial ca_lcul_us. coi-
stants, variables, functions, increments, lags, curves, etc. Part X fundamental ideas of
integrations, inspection, substitution, areas, volumes, mean value, double, trpre mtegrat_m_r],
ete. Practical aspects stressad. 50 pages illustrate applications lo_specific prnt_:lrcms of civil,
nautical engineering, electricity, stress, strain, elasticity, similar fields. #56  questions

15 5 tly ‘answered. 3&pp. of wseful censtants, formulas. v + 43lpp.
g;i .':rgd. 366 problems, mostly - T370 Paperbound $2.06
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MONCGRAPHS 0N TOPICS OF MODERN MATHEMATICS, edited by J. W, A. Youn
mathamatics for persans who have forgotter, o not gone Oevond, higho s
¢ monographs on foundation of gzometry, modewn pure geomeiry, non-Eoo
fupdamental propositions of algebra, algefraic equalions, funclinns,
numbers, etc. Each munograph gives procfe af fmportant resuplts, and descript
ing mefheds, o provide wide coverggs. "0t nign mer:1,"" Scientilic Amercan
duction by Prof. M. Kling, M. Univ. 100 diagrams. wei 4+ 416pp. gég xP

MATHEMATIES IN ACTION, 0. G. Suifon. Excellent middle level application of s
to siudy of universe, demonstrates how math is aspplied fo Ballislics, throry ot o
MAThinEs, wavas, wave-iike pheromena, theory of fluid  flow, mcleo
statisiics, flight, similar phenomena, Mo wnowledge of advancen matn 7
pquativns, Fourier series, group concepts, Eigenfuactions, Planck’s coenslaot, 2
and similar topics explained so clearly in everyday danguage that almast an
henefit Irom reading this even if much of high-scheel maih iz forgotien. iq F-¥:
figures. viii + 236pn. 53 kB T45] Coathkas = 360

ELEMENTARY MATHEMATICS FROM AN AGVANCED STANDPOINT, Felix Klein.
an outgrowth of Klein's famous integration and survey cobrse at Gottingen. |
io interpret, adjust apocther, it covers basic {opics m pach area, with ox
Especiaily valuable in areas of modern mathematics. YA great mathema
teacher, . . . deep insight,”’ Bel., Amer. Math Soc, %

¥ol. & ARITHMETIC, ALGEBRA, AMALYS|S. Introduces concept of fun:t;‘gn:.
livens discagsion with graphical, geometric methgds, Partial contzgissda
special properiies, complex numbers, Real equatians with real  UnkEc e sorzlen
tities. Logarithmiz, exponential fenctions, infinitesimai cafculus, JraffSedniosnce i e
theory of assomblages. Index, :25 figures, ix + 274pn. 53% x & Z151 Papsrbouns

Yoi, 1], GEDMETRY. Somprehensive view, aciompanies spacespekcaption
etry with apalytic formaelas whish facilitate precise formuldbign? Parliai
geometric manifeld, line segments, Grassman determinagt @rinciples, o
tigurations of ssace, Geometric transformatisns: affinggspraiective, highe
tions, theory ol the imaginary. Syslematic discussion Gf Beometry and its 7 Lnczlons.
illusirations. ix + 214pp. 5% x &. N\ 5151 Papzrouurd
A TREATISE N PLANE AND ADVANCED TRIGCNOMETWRY, E. W. Hobsen, Dzt
caverage, gring beyond usual college level, (oag of few works covering adl
fuil detail. By a great exposifagwidbeaetliaranticigdt@a vt potentially dil
Includes circutar junctions; expansion of dumgbons of mulliple angle; trig tables; ra
petween sides, anglcs ol triangles; gofwdlex numbers; elc. Many probiems iy

“The best work on the subject” Natures Formerly entitled “a Treatise on Fuang Trgopeins
etry.” 685 examples. 66 figures. x4 382pp. 5% x 8. 3353 Paperhound 51.95

HON-EUCLIBEAN GEOMETRY, Roberfo, Bunala. Tre standard coverage ot non-£ go0m-
etry. Examines from both a JMistcical and mathematical point of i which
have drisen fram a siudy’\sl\E[Jclid's St postulate on pavallel ded  aie
complete texts, translateg, Bulyai’s “Theary of Absolele Space,” Lohacinevs " Thangy

af Parallels.” 180 diagrgms. 431pp. 538 x 8. 527 Papertoend %1.93

GEOMETRY OF FOUR B\IM‘ENSH]NS, H. P. Manning. Unigue in Ergiish as o clear. concise infro-
duction. Treatmeny Vg “Synthetic, mestly Euclidean, though in hyperpianes and hyperspherss
at infinity, rcnEuskidean geomctry is used. Histarical introduction. Fouadations of 4-diman-
sional geomelryd Perpenditulanty, simple angles, Angles of planes, higher order. Symmelry,
oroer, m&n;‘zhyperpyramids. hypercones, byperspheres; figures with  perallel clemants;

\’l"U|_L-'I'I'le, Sevolume 0 space; regular palyhNedroids. Glossary. T figures. o & 3AECR

5% x 8N\ $182 Paperbound $1.95
0¢‘:

3

MATHEMATICS: INTERMEDIATE TO ADVANCED
GEOMETRY (EUCLIDEAN AND NON-EUCLINDEAN)

THE GEDMETRY OF REME DESCARTES. 'With this booh, Descartes founded anpaiytical geomelry.
Qriginal French text, with Descartes’s own diagrams, and ewcellent Smith-latham ftransla.
fign. Contains: Proplems the Consfruction of “Which Requires only Straight Lines ard Circies;
On the Nature of Corved Lines; wi the Coastruction of Selid or Supersolid Pro:lems. Lia-
grams, 258pp, 3% % B 568 Paperhound $1.50
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THE WORKE OF ARCHIMEDES, edited by T. L. Heath, Al the known works of the great Greek
matkemaliz-an, inciuding the recently discovered Mothod of Archimedes, Contains: On
Sphere and Cylinder, Measyremcnt ot a Circle, Spirals, Congids, Spheroids, elc. Definrijve
ecilion of groalcst mathematical intellect of ancient warld, 188 page study by Heath dis-
cusses Arckomedes and history of Greex mathemalics, 563pp. 53 x 8, 59 Paperbound $2.00

o

COLLECTED WORKS DF BERNARD REIEMANN. Important sourcehook, first to contain complete
texl of _ Warke' and the 1902 supplement, unabridged. 31 monograshs, 3 complete
13 miscellaneous  papers which kave been of enormous importance in
. treury of complex variables, other areas of mathematics. Edited by
Lo Weber, K. Noether, W. Wirtinger, Genman lext; Engiish introduction by
SH0p. 5% ¥ &, 5226 Paperbound $2.85

. Daviuki
Hars lewy
RYZEN BOGHS OF EUCLID'S EELEMENTS, edited by Sir Thomas Heath. Definitive odition
of u of wery greatesl classics of Western world. Complete translation of Heiberg text,
Book XV, 150 page intreduciion on Greek, Medieval mathematics, Euoljo N\
elc. Claborate critical apparatus parallels iest, ana'yzing each defific
pragnsition, covering textual matlers, refutations, supports, axtrapolatigns,

ete, Tois e full Ewcl.d. Unabridged reproduclion of Cambridge U, 2nd edition » 3 yal-
Umes, 395 fgrres. 1425pp. 53 x 4, 588, &0, 00, 3 volume set, paperboyi, $6.00
AN INTRODUCTION TO GEGMETRY OF N DIMENSIONS, D. M. Y. Sommerville. Presupptses no
Erevi mewledge of field, Only boak in English deveted exclusively to highet Sfmensional

uises fundamrental ideas af incidcnce, parallelism, perpendigulanity, anuics
rospace, enumeralive geometry, analytical geometry fram profaelive ‘and metric
wiameniary ideas in analysis situs, coslent ot hypefspaciat ficures. GO
9%s % 8. :Sﬂ‘;[ v Paparbound $1.58

ELEMENTS OF MON-EUCLIDEAN GEOMETRY, 0. M, Y. Sommerville. Unidud in proceading step-
by Reguires only good knowlenge of high-school peomelry #wd® algekra, to grasp ele-

‘perbalic, eliipt-c, anaiviic non-Euclidean Geom&tri%.s_ﬂacc curvature aad its
dital axes; homopethic centres and systems ef fircies; parataxy and parallel-
s prost of defect area theorem; muzh maore, \'.Lr’}q’exceptional claritv., 126 prob-
Rapter wrnds, 133 fgures. avi b 274pp. 53540NGY SA60 Paperbound $1.50

THE FRUMDATIONS OF EUCLIDEAN GEOMETRY, H. &. :_F”o‘rdcr. First canaectad, rigorous ac-
counl in light of modern anslysis, establishing prpfomhor.—s without recourse to empir cism,
wthoul multiniying Avpotheses. Bazsed on tpola.pE™i9th and 20t -.':r:'ntur;.'I math9|:'|at1cua|r_13,
whe rade it possicle to rem PN SR feFPENIZE problems ol earlfer
nad, Begirs with inzpart;f‘s{“re a'yoﬁgﬁqgﬂ?}ﬁgn%méﬁgﬁcms in gesmatrical feures,
casses, relations, linear order, @atural numbers, axioms for magniluces, groups,
-fieids, fia'ds, non-drchimedian systemsythe axiom system (at lengthl, particular axioms
chaziers on the Parallel Axioms), constructions, cur%%rsucnccr.ns 1|I:r|ty. etc. Lists:

axizms cipoyed, constructions, syrbglss in frequent wse, 29%cp. O3 x4,
i y 5581 Paperbound §$2.00

+%
&
CALCULUS, FUNQ’EION THEORY (REAL AND COMPLEX),
FOURIER THEGRY

FIVE ¥OLUME ‘-'T,HE[?kY OF FUNCTIGNS' SET BY KONRAD KNOPP. Provides complete, readily
followod 2cogufit Yof theory of funciions. Proofs given concisaly, yet I;\ntﬁhc}"ut satrifice of
camzlefenasg “igor, These volumes used as texts by such universities as MLT, E‘:Incqgo.
MY City Goldege, many others, "Excelfent introduction . . . remarkably readable, concise,
Clear, rigdgdus,”” 1, of the american Statistical Association.

ELEMENTS ORY OF FUNGTIONS, Mpnrad Knopp. Provides background for further
'*'U-‘NI‘;FLI:J"in UtEisnggt.T::rE texts on similar level, Partial tuntents: Foundations, system of com-
Qexyaumbers and Gaussiar plane of numbers, Riemann sphere of numbers, ma_pglng‘_wm{
IThed" fuactions, normal fories, the lpgarithn, cyclametric functions, _blnaml_a_!r_ser}ss._ .10,,
anly for the young student, but alse for the stedent who knows allsfggutp w .ag |sd|n$T| e
Mathematical Journal, 140pp. 5% x 8. apercoun -

THEGRY OF F TIONS, PART I, Konrad Knopp. With volume _|I:_prgv|dne_s coverage of basic
cancepts andqucurcms, Partial conteats: numbers and pm_nlt,s, runl.hon.‘e _afh.'la ;n?m_lr%::
variable, integral of a centinuous funclien, ICauch}'s |ntergru._ltheqrem! AT ).".S Iqecr%"es
formulae, series with variable terms, expansion and _ane:lyhc_ r.|\nct|0n n : power 51 i S
znalylic canlinuation and complete defimition of analylic “ctisns, Laurent expansion, type

of singutarities. vii + 146E3. 536 x 8 8156 Paperhaund $1.33

THEGRY OF FUNCTIONS, PART If, Konrad #nopp. Application and [lurther develapment of

H h f ; jans “tira, Weierstrass, Meromorphic
general thegry, special togics. Single valueed functions, entire, Wer Rieamann surfages‘

- : P tians.
functions, Mittag-Leffler. Periodic furcfions. Multiple wvalued func.mngsoppl 53 % H.

Algebraic functions. Analytival configurations, Riemann surface. X '_815? Faperbound 57,35
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PROBLEM BOOX [N THE TREORY DF FUNCTIONS, VOLUME I, Konrad Knapp. Pr.
mentary theory, for use with Knopp's "Theory of Funftmns or any clher
accorging 1o iacreasing diffrcelty. fundamental concepts, sequences of aumb
series, complex wvariable, integral theorems, development in o series, oo
Answers. viii T 126pp. 5% X B 3 1EH Paperholw

PROBLEM BOOK 1N THE THECRY OF FUNCTIONS, VOGLUME I, Konrad Knopp.
of funciions, to be used with Knopp's “‘Thepry of Functions,” or comparable o
ities, entire and mergmorphic functions, periodic, analylic, conlinuate
funictions, Riemann surfaces, conformal mapping. Iecludes section of
UThe difircull Yask of selecting . . . problems jusl within the raach
Were masterfully accomplished,”™ AM. MATH. S0C, Answers. 138pp,

§157 Faperchi,

ADVANCED CALCULUS, E. B. Wilson. Stil rmoﬁn-zr-ri as one ol
texts. Immense amount of wel-reproscnted, funda tal materia
vecter functions, ordicary differenlial  eguations, 1l lunctic
etc., which are escenent intreductions o these
Ovar 1300 exercises cover both pure meth and agplications
preblems, lgear reference, refresher 54 page intreductocy revie

LEGCTURES ON THE THEDRY GF ELLIPTIC FUNCTIONS, H. Hancoek. Eci
English with suo exensive a coverage. especiany aof Abel, lacodi
Hermrte Livuvilie, arg Riemann. Unusual fullress P lreafment
theory Jn thissussing universe of eiliptic integr griginatioe
lacobi, Vse is made of Riemann to provide mos! gereral theory.
76 figures, xxiii + 498pp. 53 ¥ 8,

THEQRY OF FUNCTIONALS AND OF INTEGRAL AND !NTEGRO DIEFERENTLAL ED.L!'\UL.'.\' Wite
Voiterra. Unabridged republication of oniy English frans Baneral tacs NG
depending ca cortinugus set of valees of enother 12
fransitien from finite aumber of warfables o 4 contirl
material on calzulus of wariations. Begins with funda
aralytic functions, functioral derivative cquations, g
ete, Mew ntroduction by G. C. Evans. Biogragny, trl
taker, xxxx + 226pp. 5% & B, %

AR INTRODUCTION TO FOURIER METHODS ND THE Lé JﬁCE

Franklin. Goncentrates on essenlime, au]ﬂ( FanywokBdths o mosl auo
quires only knowledge of rcalculus, Covers\obmglex gual.ties wth metanas of
mentary unctipns for complex valves of’«.rgumcr‘t and Ginding i

Fgarier series; harmonic anaylsis: much nerg, Methods are «
of heat flow, wibrations, efociricald ’Ird"larm:ﬁmn. “Ic“{rum.;'k.t
lems, answers. Formerly cqttlggl\fuurler Hathods,” » -+ 23800,

s\ J
THE ANALYTICAL THEORY “MEAT, Joseph Fourier, Thiz book, whicn revelu
matical phyzics, has beBp uSed by generations of mathsmatizians and phy
in heat or application &\ Fourier integral. Tovers rcause and refloction
radiant heating. haabing et closed spaces, use of trigonom : in
Fourier integral, ete.\{panslatad by Alexander Freeman. 20 figurcs, =xii +
) 553

ELLIPTIC INTEGB}'.S, H. Hancock. [nvaluable in work irvoving d.fferental enquations
cubics, quaftics under reat sign, where elementary caiculus metheds ave inad ta. Prac
tical soluﬁ:{us to problems in mathematics, engircering, physwes; dilferentisl eg

gquiring €integratica of Lamé’s, Brist's, or Budowet's zasation

eIIJpse..hypertlo.a lemiscate; solutmnq a‘ problems in elastics. m
resistafte varying as the cube af the wvelocity: peadulums;

d
3108

Phitin

E-D
Paperhound 37.79

Lamaad I'f‘zl ra-

delermingtion
ton of &8 oprar
mare, Treositicn in

viithy Tegendre-Jacabi thegry. Rigorous discussion of Legondse dransformalions, 20 'glrFa
/78 wiace tanle. 1Ddpp. 5% x B, 8484 Paperbound $1.29

AHE TAYLOR SERIES, AN INTROOUGTION TC THE THECQRY OF FUNCTIONS OF & COMPLEX
YARIABLE, P. Dienes. llses Tayfor series 1o approach thecry of fupchons, nidinary
saiculus only, except in Jast 2 chapfers, Starls with intraduction L and Coi-
plex atgebra, derives properties of infinite series, complox difforgat . integration, etc,
Covers biunifarm mappiag, overconvergence and gap theorems, Tayicr series un its circle
of convergenze, stc. Unabridged corrocteg raissue of first edition, 186 examoies, many
fully worked outr, BF figures. xii -~ 555pp. 53% x & 5351 Paperbound $2.73

LiHEAR INTEGRAL EI]UATIGNS, W. V. Lovitt. Systematic survey of general theory, with some
apptication fo differential egquations. caloulus of variations, orohlems of math, physics.
Inciedes: ntegral equation ef 2nd kind by successive substitutions, Fredholm's egualioh
as ratto of 2 integral series in lambda, applicatians of the Fredhulm theosy, Hiipert-Schmidt
theary of symmeiric Kerrels, application, etc. Mewmanm, Dirichlet, vidratory problems.
i% 4 253pp. 5% x 8. §175 Clolkbound $3.50

S176 Paperbound $1.60
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DICTIGHARY OF CONFORMAL REPRESENTATIONS, H, Knher Developed by British pdmiraliy to
sowe Laplace’s aguafion jn 2 dimensions. Scores of geometrical forms and transformations
for o electrical engineers, Joukowski asrefoil  for aerodynamics, Schwartz-Christoffel trans-
ations for  hydre-dvnamics, franscendental functions. Contents classified according to
ical functions describing transformations with corresponding regions. Glossary. Topo-
| irdex, 447 diaprams. 8l x 9L3, .5180 Paperbound $2.00

ELEMENTE OF THE THEORY OF REAL FUNCTIONS, ). E. Littlewood. Based on lectures at
Tripity College, Cambridge, this book has proved extremely suceessful in intreducing graduate
nts to modern Theory of functions. Offers full and concise coverage of ciasses and
numbars, well ordered series, other types of series, and elements of the theary
in ol painis. drd revised edition. vii + Tlpp. 53 x 8. 5171 Clothbound $32.85

%172 Paperbound $1.25

PUFLHITE SEQUENCES AMD SERIES, Konrad Knopp. 1st publication in any languzge. Exeellent
ini~pawclion ‘o 2 topics of modern mathematics, destgned te give student backgroung 1@
le furlher alone. Ssquences and sets, real and comolex nuembecs, etc. Functionseof
k and cormplex varahle, Sequences and series. Infinite series. Convergent power sgries
Exparsion of elementary functions. Numerical evaluation of serigs. v -+ 186pp, 538 % 8,
5152 Clothboudd™N§3i50
5153 Paperbetath $71.73

\
TifE THEORY AND FUNCTIONS OF 4 REAL VARIABLE AND THE THEQRY OF FOURIER'S SERIES,
E. W .Hebson, Cne of lhe best intreductions to set theory and varisus aspc(cis'oof fuacticns
and “puiiur's serivs. Reguires only a good background in calculus. Exhawsiwe foverage cof:
and descrivtive properiies of sets of points; transfinite numbersZ and arder types;
netions of 2 real variable; the Riemann and Lebesgue integrals,.Segiences and series
wimbers: power-series; funclions representable by series sequenges) of continuous funce
s trgonometrical series; representation of functions by Felwigr’s series; and much

e, “THe best possible guide,” Mature. Wol, | BB detailed éwgwples, 10 figures. Index.
ws -+ 738pp. Vel 11: 117 detailed examples, 13 figures. x +, F80pp. Bl x 9la.

el I S387 Paperbound §3.00

\ %ol 1l 5388 Paperbound $3.00

ALMOST PEARIODIC FUMCTIONS, A. 5. Besicavitch. Uniqu?a.a’nd important summary by a well
sngwn mathematician covers e detail the two stapes of development in Bahr's theory
cb almost pericdic funciions: (I3 as a generalizafion, 0f pure periodroity, with resulis and

pisois: o2 the wark dome by i hi‘"&w rin generalizing the theory.
xi + 180pp. 53f'r;x 8. W%WP&]}W@G?[ $ lygldg% 518 Paperbound §1.75

INTRAGUCTION TO THE THEORY aOF FBUR]EH»‘S SERIES AND INTEGRALS. H. 5. Carslaw. 3rd
revised odition, an outgrowth of author's courses at Cambridge, Histericgl introduction,
rational, irrational aumbers, infinitedsequences and series, functions of a single variable,
cofinite integral, Fourier scries, g:\gﬁsim[lar topics. Appemlhces _gl_|s$s§6§ract|§§(|8 hagmumc
analysis, period analysis, UEBeSzue's theory, 84 examples. xii pe. x 8

¥els, peripfcgram yl\'\t‘ Y S48 Paperbound $2.00

SYMBOLIC LQEIC

THE ELEMENTS.,’QF\MATHEMATICAL LOGIC, Paul Rosembloom. First publication in any Jan;
suage. Formgthematically mature readers with no training in symbolic. togic. Development
af lecturese Biv€h at Lund Umiv.. Sweden, 1948, Partial confents: logic af classes, funda-
mentai theo\_sms, Boofean alzebra, logie of propesitions, of pregositional functuon_S. GAPTES
sive lagguages, combinatery logics, development of math within an abject language, para-

N |, Church, and simiiar fopics. iv -+ 2lspp. 53& x &
dDX'Bs,\.thecrems uf Post, Goedel, Church, a i ST e s1.45

wl)
Y.
INTRODUCTION TO SYMBOLIC LOGIC AND ITS APPLICATION, R. Garnap. Clear, comprehensive,
réeoraus, by perhaps greatest hiving master. Symbolic languages analyzed, one _{Eonslructed_
Applications to math {awiom systems for set theary, real, natural numhers;, _topolqu
(Dedekind, Cantor continuity explanatiens), physics {general anaiysis of de”termma_tmn,_ cay-
sality, space-time topolagyl, biology (axiem system Bor ba;ég canceptsl. . Af_g?;;emxlfice;
ira i ik G hicte, Cher pxarcises, % figures,
Zeniralblatt fiir Mathematik und Fhre Grenzgeh S o 51,05

241pp. 53%& % 8.

YMROLIZ LOGIC, Susanne K. tanger. Probably cleare‘st book for the
:#ilc!?(;rpnhoeeucs?igr?ti!‘rn Isayrnan—nu special knowledge of math required. Stlarl‘s with simplest
symbols gées on to’giue remarkable grasp of anre-s_nhroedcr, Russell-Whitehead _systerns.
clearly ,qmckly Partial Contents: Forms, Generaiization, Classes, Dedqcy_ve System  of
: ; Assumptions of Princigia Wathematica, Logistics, Proofs of

Glasses, Aleebra of LOgic, i i intelligent non-mathematician
Theorems, ete. “Clearest . . . simplest introductien . . . the inte égg pn athematicien
should have no difficuity,” MATHEMATICS GAZETTE. Revised, expan Selﬁfl nPaperb&l)und 5178

value tables. 368pp. 536
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TRIGONOMETRICAL SERIES, Antont Zyemund., On meodern advanced leve'. ©
erganized anatyses of rigonametric, arthogenal, fourier systerrs of !
adeguate descriptions of summahility of Fourier series, proximation lheo
converpence, giverperce of Fourrer saries. Especialiy wvaiuab'es dfor B
pean covorage, 329pm. B3 x & s

cargd Jlly

THE LAWS GF THOUGHT, Gegrge Boole. This book founded syw
ago. fL s the 1st significaal attempt to zjply Ing firoall oA
Partial coptents: derivation ot laws, <igos and ta . interur THER
tions of a perfect method, analysis, Adistefeiian lvgic, protavindy, aerc
wwii 4+ 424pp. 535 0 8. KLY

SYMBOLIC LOGIC, C. I Lewis, ¢. H. Langford. ?nd revised aditic
ook in symbohc ngic Wide LONETRE o7 "nurc, fi one of fotiest ot
plus much mafarial not availablo d inovniume xodisth
af extensiras end niengicns. Cons 5 ur cunverse ENLENT
system presents suppssition of wvariety
tions on sirict Jimitztions. esisiznce th o
truth wvalue syslems, the matriz meathod, m\p'.'\uation and cr'nluttlmnly
progesitions; ete. Most waluable,' Tim2s, Longon, S06pp. 5% % & 5

GROUP THEORY AND LINEAR ALGEBRA, SE’{S;”F.TC,

LECTURES GN THE ICOSANEDRON AND THE SOLUTION OF EQUATIONS UF THE F FTH GFGHFE
Felix Klgin. 3piviion of guintics in terms of retatiors of regala® o !
axes 01 symmelry, A olass wndisgansable sadree fur th 2 X"fcb

grometry, crystalio . thsi(ierab.u eApianatory malarize o uned. 2

biblicgranphy. “Tias maavgrapt . . . dztailea, reag d‘l\brok Kath.

fiom., avi + 23%pp. 5% x B, 2214 Fa
AN\

INTRGDUCTION TO THE THEOQRY OF GROUPS OOF FllilLTiE GRDER, R.

iundamental thearems arnd their apegli rmnq sin "*' sets. sysiz

etC.. Progresses in easy s*aga\s.-'\tn‘ﬁb I-&@!}Lﬁﬁ?i ;r?fgz’ aupa:

permatation, cro, Except 1 chapter whars meHu{;& ari; dosivaole, no
1331 exarcises, pruh.em avl =- 447pp, 53aCNNE.

@

THEDRY OF GROUPS OF FINITE CIRUE’R, W. Burnside. @irst 3

stiii one of clearest inlrudu"mns “Rartiz! centintss permwiatiang. gioo
represgrtation, composilizn soriegss i arou meruruhism of a group o
ErOuUps, EHME gower Eroups, ué.mhtahm groups, invananis ot arow
tien, grapnical representatiomg ele” 'Clear and detailen aiscassion
which are irstructive. DF"alg RwS, Axiv -+ S12pp, W3 ok B

SZ 45

COMPUTATIONAL ME'IHI]DS OF LINEAR ALGEBRA, V H. Fadueeva
18t Engush fransiz lhanldhy unigue, vaivable w 3
eupnsition of mostZepariant metngds of - .
of deriving I'IJI'HE‘P tolut'ons ¢! problen mathematizal physics. g
frcludes survey\n teCessAry backEround, maost ém,':a.rtan‘. methods of salub
iterative gr Ofie of most vaiuabla teatures o5 23 lavles, 1s-,n.c ciws
Lnava:lable%w\-huc Transiztor's note. * + 252pp, 53 & E. 22

THE CON’ﬂNI.II.IM AND OTHER TYPES OF SERIAL ORDER, E. ¥. Huntingten. Tis 'am
gives a systematic elementary accoun? of he modern theary of toe contindsm
of SEQBP order, Based an \I.P Cantor-Dederind ordina! lnaory. which reouirss po to
growicdge of higrer mathematics, it offers an easily fo'lawed aralys,s of crd—'ed E

\‘l\s}ratn and densa  serics, condinuous  series, GCantor's  transfinite s

production to the rlgcrm-s theory of the cortinuur . . . rzading cauy,
2nd edifion. wiii + B2pp. 43% A 8. 2120 Cygthbound 52,78
5130 Paperbound $1.00

THEQRY OF SETS, E. Kamke. Clearest, amples! ntredustion in English, weli suited fur inde-
pendent study, Subdivisians of main theory, such as theary af sats af powits. &
but emphasis in on genecai thaory, Parlial contents: rudimerls of se® theory,
their cardinal numiers, ordered sets, their arder ypes, wall-ordered sois, Th dre

nembars, wii + 144pp. B34 oz 8. 5141 fac r—rbuu'v:l F1 35

COMTRIBUTIONS TO THE FOUNDING OF THE THEORY 0OF TRANSEIMITE MUMBERS. GeOTE Captor,
These papers foonded a new Dranch of matneratics. The famous articles o8 LEG4-7 are
translaied, with er 82-page introduction by P, £, B. Jourdain dealing with Ga *ha,
tackground of his discoveres, their results, future possibinties. ix + 21lpp. b%s

34% Peperhoond $1 25
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NUMERICAL AND GRAPHICAL METHODS, TABLES

JACOBIAN ELLIPTIC FUNCTICN TABLES, L. M. Milne-Thomson. Easy-to-follow, practical, not
naly useful rumericai tabies, but cemplele elemantary sketch of application of elliptic
fungctizns, Covers descripltion of ponciple properties; compicte elliptic integrais; Fourier
series, expansicrs; pericds, Zerps, poles. residees, formulas for speciaf values of argument;
crbic, quartic (_ol\.r”.a.'nealq perdulem gproblem; etc. Tahbles, graphs {orm  bogy ol book:
G."aph. 5§ fizure tablz of elliptizc functien sn (u m}; on §u my dn (o az. B ficure table of
piete elfiptic integrals K, K, E, E, nome g, 7 figure table of Jacobiar rela-function
. 3 fpures. xb 4+ 1E3op. 53@ % B, 5134 Papsrhound $1.35

TABLES OF FUNCTIONS WITH FORMULAE AND GURVES, E. Jahnke, F. Emde. Most comprehensive
i-vplume Enplish text cocection of tables, formulag, curves of transcendent functions. 4th
correcied edition, new Fh-page ssctiegn glving tables, formulze for elementary functions gl
in ather English sditions. Partial contents: sime, cosing, logarithmic infegral; error intededly
|r‘t°gra|s theta functions; Eegcndre, Bessel, Riemann, Mathieu, ny pergen@“etm
fnati ors; &iz. Outl-of-the- wwedy functions for which we know no ather saurce." S€ie tn‘\c
Computing Service, Ltd, 212 figeres. 400pp. 554 x Biu. $133 PaperbuLTnH $2.0

MATHEMATICAL TABLES, H. B, Dwight, Covers in one volume glmost Every Tunwon of im-
partanze in applied n1athc'nat|cs, engineering, physical sciences. Three extremely fine
tab'gs of the thrae trig fukctions, inverses, to 1000th of radian; natural,“egmmon legs,
sguares, cubes; hyperbolic functions, ln\forseq faf¥ + h¥ exp. iha; complete “elliptical in-
taarals of Ist. 2ad kmd sing, cusing rntegrals exponeantial 1ntegram,\t‘|rx, and Ei{ —x};
binomial cocfEtients: fatierials to 259; surface zonal harmonics, first derTvatives: Bernoulii,
Ecler numbers, thair logs fo base of 10; Gamma function; nsrmal Nrababitity |ntngaJ over
E0pp, Bessel functions: Riemann :eta function. Fach tabie with No¥mulae generally used,
saurces of more extensive tabies, interpelation data, etc. Oy@e hali have columns of
differenzes, to facilitate interpolation. wili <+ 23Igp. 53g x 8.\\, 5445 Paperbound $1.79

PRACTICAL ANALYSIS, GRAPHICAL ANG NUMERICAL METH,QN, F. A, Willers. immensely prac-
tcal hand-book for eagineers. How to interpoiate, weevaypitus methods of numerical differ-

Ratiatics and integration, determine reais of a single\ ®gebraic equation, systam of linsar
""Lz.EI-ID"Io, use empirical farrulas, integrate d|ﬁcruﬁnﬁ’l equatians, eic. Hundreds of short-
wuts for armmg al numericai sciutions. S'.:ue elerdion on American calculating machines,
wy T W, Simpsan, Transia tiomabee &, dblﬁaz ‘Mylmgddhs 422pp 5% x 8.

4273 Paperbeoend $2.00

NUMERICAL SOLUTIONS OF DIFFERENTIAL .Euuﬁrlch. H. Levy, E. A, Baggott. Camprehensive
sottestion of methods for solving erdinaey Gifferential equations of first and higher order.
2 reguirements: practical, easy to gsa&f; hore rapid than school metheds. Partial contenls:
grapghizal irtegration of differential fquations, graphical meothods fer dedailed  solufion,
Numerical salution.  Simultaneous Nedtations  and equatigns of 2nd and  higher orders,
"Shouid be in the hands of all th research and appiied mathematics, teaching,” Nature.
21 figures. viil + 38pp. 5 \\B' 5165 Paperbound $1.75

NUMERICAL INTEGRATION QF FFERENTIRE EQUATIONS, Bennet, Milne, 8ateman. Lnabridged
repudlication of arigin .preparnd for Matiaaal Resea'ch Counml Maw metaods of integralion
by 3 leading r*la‘r nafiEans: 'Tha Interpo afional Polynomial,' "Successi\re Approximation,™
Ao AL Bennett, StelcNyStep Metnods eof Intepration,” W. W, Milne, “Methods for Partial
Differential Equa*oﬂ Baiomar, Methods dor partial differential equatiers, sclution
of differential nqﬁ‘\w to non-intagral values of a parameter will imterzst mathematicians,

physicists, 28&\f00tnates mostiy bibliograpkical. 235 item classified bibliography. 108pp.
53 % 8 » 5305 Paperbound $1.35
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